Genetic Background of Response of Trees to Aridification at the Xeric Forest Limit and Consequences for Bioclimatic Modelling

Abstract

Trees, as dominant components of forest ecosystems, are of high ecological importance in the temperate belt and receive much attention with regard to adaptation potential and future risks of diversity loss and extinction. Much of the climate change literature however is based on simulations and models, the genetic background of which is often deduced from results with annuals or other fast reproducing organisms.

Keywords

Forest ecosystems Changes of climatic environment Aridity tolerance Common-garden test results 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andalo C, Beaulieu J, Bousquet J (2005) The impact of climate change on growth of local white spruce populations in Québec, Canada. For. Ecol. Manage., 205: 169–182CrossRefGoogle Scholar
  2. Beaulieu J, Rainville A (2004) Adaptation to climate change: genetic variation is both a short- and long term solution. The Forestry Chronicle, 81(5): 704–708Google Scholar
  3. Berki I, Rasztovics E (2004) [Research in drought tolerance of zonal tree species, with special regard to sessile oak.] (in Hungarian with English summary) In: Mátyás Cs, Vig P (eds.), Erdo és klima – Forest and Climate IV. Sopron, Hungary, 209–220Google Scholar
  4. Berki I, Móricz N, Rasztovics E, Vig P (2007) [Tolerance limits of beech.] (in Hungarian with English summary) In: Mátyás Cs, Vig P (eds.), Erdo és klima – Forest and Climate V. Sopron, Hungary, 213–218Google Scholar
  5. Booy GR, Hendriks JJ, Smulders MJ et al. (2000) Genetic diversity and the survival of populations. Plant Biol., 2(4): 379–395CrossRefGoogle Scholar
  6. Borovics A (2007) Assessment of adaptive potential of beech and sessile oak by correlative analysis of allozymatic variation patterns and climate parameters. In: Mátyás Cs (Proj. leader), Climate uncertainty and threats to forest cover. Research report, in Hungarian, 89–98Google Scholar
  7. Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Advances in Genet., 13: 115–155CrossRefGoogle Scholar
  8. Bradshaw AD (1991) Genostasis and the limits of evolution. Philos. Trans. Royal Soc., London, 333: 289–305CrossRefGoogle Scholar
  9. Briceno-Elizondo E, Garcia-Gonzalo G, Peltola H, Matala J, Kellomäki S (2006) Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions. For. Ecol. Manage., 232: 152–167CrossRefGoogle Scholar
  10. Clausen J, Keck DD, Hiesey WW (1940) Experimental Studies on the Nature of Species. Vol I and II–IV (the additional volumes published in 1945, 1948, 1958) Carnegie Inst. Publ. Nr 520, Washington D.C.Google Scholar
  11. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science, 292: 673–679CrossRefGoogle Scholar
  12. DeWitt TJ, Scheiner SM (2004) Phenotypic variation from single genotypes. In: DeWitt, TJ, Scheiner SM (eds.), Phenotypic Plasticity; Functional and Conceptual Approaches. Oxford University Press, Oxford, 1–9Google Scholar
  13. Eanes WF (1999) Analysis of selection on enzyme polymorphisms. Ann. Rev. Ecol. Syst. 30: 301–326CrossRefGoogle Scholar
  14. Eriksson G, Ekberg I (2001) Introduction to Forest Genetics. SLU Press, Uppsala, SwedenGoogle Scholar
  15. Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in response to global warming. Science, 294, 151–154CrossRefGoogle Scholar
  16. Fournier N, Rigling A, Dobbertin M, Gugerli F (2006) Faible differentiation génétique á partir d’amplification aléatoire d’RAPD, entre les types de pin silvestre d’altitude et de plaine dans les Alps á climat continental. Ann. Forest Sci., 63: 431–439CrossRefGoogle Scholar
  17. Gálos B, Lorenz Ph, Jacob D (2007) Will dry events occur more often in Hungary in the future? Env. Res. Letters 2, doi: 10.1088/1748-9326/2/3/034006Google Scholar
  18. Geburek T, Turok J (eds.) (2005) Conservation and Management of Forest Genetic Resources in Europe, Arbora Publisher, Zvolen, SlovakiaGoogle Scholar
  19. Hampe A, Petit R (2005) Conserving biodiversity under climate change: the rear end matters. Ecol. Letters, 8: 461–467CrossRefGoogle Scholar
  20. Hamrick JL (2004) Response of forest trees to global environmental changes. For. Ecol. Manage., 197(1–3): 323–336CrossRefGoogle Scholar
  21. Hamrick JL, Godt JW, Sherman-Broyle SL (1992) Factors influencing levels of genetic diversity in woody plants. New Forests, 6: 95–124CrossRefGoogle Scholar
  22. Hulme PE (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat? J. Appl. Ecol., 42: 784–794CrossRefGoogle Scholar
  23. Huntley B (1991) How plants respond to climate change – migration rates, individualism and the consequences for plant communities. Ann. Bot., London, 67: 15–22Google Scholar
  24. IPCC WG II. (2007) Fourth assessment report for government and expert review. Alcamo J, Moreno JM, Nováki B (eds.) Chapter 12: Europe. Bruxelles, Belgium, 62pGoogle Scholar
  25. Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecology Lett., 8: 1010–1020CrossRefGoogle Scholar
  26. Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change related growth decline at the southern edge of Fagus sylvatica. Global Change Biol., 12: 1–12CrossRefGoogle Scholar
  27. Kingsolver JG et al. (2001) The strength of phenotypic selection in natural populations. Am. Natur., 157(3): 245–261CrossRefGoogle Scholar
  28. Kramer K, Mohren G (2001) Long-term effects of climate change on carbon budgets of forests in Europe. Alterra Report, No. 194Google Scholar
  29. Kremer A, Le Corre V, Mariette S (1999) Population differentiation for adaptive traits and their underlying loci in forest trees. In: Mátyás Cs (ed.), Forest Genetics and Sustainability. Kluwer, Dordrecht, 59–74Google Scholar
  30. Krutzsch P (1974) The IUFRO 1964/8 provenance test with Norway spruce (Picea abies Karst.). Silvae Genet., 23: 58–62Google Scholar
  31. Langlet O (1971) Two hundred years of genecology. Taxon, 20: 653–722CrossRefGoogle Scholar
  32. Lapenis A, Shvidenko A, Shepaschenko D, Nilsson S, Aiyyer A (2005) Acclimation of Russian forests to recent changes. Global Change Biol., 11: 2090–2102CrossRefGoogle Scholar
  33. Ledig FT, Kitzmiller JH (1992) Genetic strategies for reforestation in the face of global climate change. For. Ecol. Manage., 50: 153–169CrossRefGoogle Scholar
  34. Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Ann. Rev. Ecol. Syst., 27: 237–277CrossRefGoogle Scholar
  35. Loeschke V (ed.) (1987) Genetic Constraints of Adaptive Evolution. Springer Verlag, BerlinGoogle Scholar
  36. Lynch M, Lande R (1993) Evolution and extinction in response to global change. In: Kareiva PM, Kingsolver J (eds.), Biotic Interactions and Global Change. Sinauer Association, Sunderland, 234–250Google Scholar
  37. Martienssen RA, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science, 293: 1070–1074CrossRefGoogle Scholar
  38. Mátyás Cs (1990) Adaptation lag: a general feature of natural populations. Invited lecture. Proc., WFGA-IUFRO Symp. Olympia, Wash. Paper no. 2.226, 10pGoogle Scholar
  39. Mátyás Cs (1994) Modelling climate change effects with provenance test data. Tree Physiol., Victoria B.C. 14: 797–804Google Scholar
  40. Mátyás Cs (ed.) (1997) Perspectives of Forest Genetics and Tree Breeding in a Changing World. IUFRO World Series Vol. 6. IUFRO, ViennaGoogle Scholar
  41. Mátyás Cs (ed.) (2000) Forest Genetics and Sustainability. Kluwer, DordrechtGoogle Scholar
  42. Mátyás Cs (2004) Population, conservation and ecological genetics. In: Burley J, Evans J, Youngquist J (eds.), Encyclopedia of Forest Sciences. Elsevier Major Reference Works, Oxford, Vol 1, 188–197CrossRefGoogle Scholar
  43. Mátyás Cs (2005) Expected climate instability and its consequences for conservation of forest genetic resources. In: Geburek T and Turok J (eds.), Conservation and Management of Forest Genetic Resources in Europe. Arbora Publisher, Zvolen, Slovakia, 465–476Google Scholar
  44. Mátyás Cs (2006a) Migratory, genetic and phenetic response potential of forest tree populations facing climate change. Acta Silvatica et Ligniaria Hung., 2: 33–46 (http://ASLH.NYME.hu)Google Scholar
  45. Mátyás Cs (2006b) The missing link: synthesis of forest genetics and ecological research in view of challenges of environmental change. In: von Wühlisch G (ed.). Forest Genetics and its Contribution to Sustainability. Mitt. BFH, Nr 221, Kommissionsverlag, Hamburg, 1–14Google Scholar
  46. Mátyás Cs, Nagy L (2005) Genetic potential of plastic response to climate change. In: Konnert M (ed.), Tagungsberichte, Forum Genetik und Wald 2004. Bavarian Centre f. For. Repr. Material, Teisendorf, 55–69Google Scholar
  47. Mátyás Cs, Yeatman CW (1987) Adaptive variation of height growth of Pinus banksiana populations (in Hungarian with English summary). EFE Tud. Közl., (Scientific Proceeding of Sopron University, Hungary), 1–2: 191–197Google Scholar
  48. Mátyás Cs, Yeatman CW (1992) Effect of geographical transfer on growth and survival of jack pine (Pinus banksiana Lamb.) populations. Silvae Genet., 43(6): 370–376.Google Scholar
  49. Müller-Starck G, Schubert R (eds.) (2001) Genetic Response of Forest systems to Changing Environmental Conditions. Kluwer Academic Publishers, DordrechtGoogle Scholar
  50. Morgenstern, E.K. 1996. Geographic Variation in Forest Trees. UBC Press, VancouverGoogle Scholar
  51. Namkoong G (2001) Forest genetics – pattern and complexity. Can. J. For. Res., 31(4): 623–632CrossRefGoogle Scholar
  52. Neale DB, Wheeler NC (2004) Mapping of quantitative trait loci in loblolly pine and Douglas fir: a summary. Forest Genet. 11(3–4): 173–178Google Scholar
  53. Peñuelas J, Lloret F, Montoya R (2001) Severe drought effects on Mediterranean woody flora in Spain. Forest Science, 47: 214–218Google Scholar
  54. Persson B, Beuker E (1996) Distinguishing between effects of changes in temperature and light climate using provenance trials with Pinus sylvestris in Sweden. Can. J. For. Res., 26: 572–579Google Scholar
  55. Persson A, Persson B (1992) Survival, growth and quality of Norway spruce (Picea abies (L.) Karst.) provenances at the three Swedish sites of the IUFRO 1964/68 provenance experiment. Swedish University of Agriculture Sciences, Department of Forest Yield Research. Report 29. 1–67Google Scholar
  56. Petit R, Kremer A et al. (2002) Identification of refugia and postglacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For. Ecol. Manage., 156: 27–40CrossRefGoogle Scholar
  57. Pigott CD, Pigott S (1993) Water as determinant of the distribution of trees at the boundary of the Mediterranean zone. J. Ecol., 81: 557–566CrossRefGoogle Scholar
  58. Piovesan G, DiFilippo AA (2005) Structure, dynamics and dendroecology of an old-growth Fagus forest in the Appenines. J. Veget. Sci., 16: 13–28Google Scholar
  59. Rehfeldt GE, Tchebakova NM, Barnhardt LK (1999) Efficacy of climate transfer-functions – introduction of Eurasian populations of Larix into Alberta. Can. J. For. Res., 29: 1660–1668CrossRefGoogle Scholar
  60. Rehfeldt GE, Tchebakova NM, Milyutin LI, Parfenova EI, Wykoff WR, Kouzmina NA (2003) Assessing population responses to climate in Pinus sylvestris and Larix spp. of Eurasia with climate transfer models. Eurasian J. For. Res., 6(2): 83–98Google Scholar
  61. Savolainen O, Bokma F, García-Gil R, Komulainen P, Repo T (2004) Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. For. Ecol. Manage., 197: 79–89CrossRefGoogle Scholar
  62. Savolainen O (1994) Genetic variation and fitness: conservation lessons from pines. In: Loeschke V et al. (eds.), Conservation Genetics. Birkhaeuser Verlag, Basel, 27–36Google Scholar
  63. Shutyaev AN, Giertych M (1997) Height growth variation in a comprehensive Eurasian provenance experiment of Pinus sylvestris L. Silvae Genet., 46: 332–349Google Scholar
  64. Skrøppa T, Johnsen G (2000) Pattern of adaptive variation in forest tree species: the reproductive element as an evolutionary force in Picea abies. In: Mátyás Cs (ed.). Forest Genetics and Sustainability. Kluwer Academic, Dordecht, 49–58Google Scholar
  65. Spiecker H, Mielikäinen K, Köhl M, Skovsgard JP (eds.) (1996) Growth trends in European forests. EFI Report 5, Springer Verlag, BerlinGoogle Scholar
  66. Turesson G (1925) The plant species in relation to habitat and climate. Hereditas, 6: 147–236CrossRefGoogle Scholar
  67. Ujvári Jármay É, Ujvári F (2006) Adaptation of progenies of a Norway spruce provenance test to local environment. Acta Silvatica et Ligniaria Hung., 2: 47–56 (http://ASLH.NYME.hu)
  68. Wang T, Hamann A, Yanchuk A, O’Neill GA, Aitken SN (2006) Use of response functions in selecting lodgepole pine populations for future climates. Global Change Biol., 12: 2414–2416Google Scholar
  69. Weis AE, Simms EL, Hochberg ME (2000) Will plant vigor and tolerance be genetically correlated? Evol. Ecol., 14: 331–352CrossRefGoogle Scholar
  70. Woods A, Coates KD, Hamann A (2005) Is an unprecedented Dothiostoma needle blight epidemic related to climate change? BioScience, 55(9): 761–769.CrossRefGoogle Scholar
  71. Westphal RD, Millar CI (2004) Genetic consequences of forest population dynamics influenced by historic climate variability in the western USA. For. Ecol. Manage., 197(Special issue): 159–170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Environmental SciencesWest Hungarian UniversityHungary
  2. 2.Forest Research Institute Experimental StationHungary
  3. 3.Forest Research Institute Experimental StationHungary

Personalised recommendations