Skip to main content

Action Research to Promote the Formation of Linkages by Chemistry Students Between the Macro, Submicro, and Symbolic Representational Levels

  • Chapter
Multiple Representations in Chemical Education

Part of the book series: Models and Modeling in Science Education ((MMSE,volume 4))

Abstract

This chapter presents findings from an action research project to improve Slovenian primary-school (13–14 years) students’ understanding of the role of chemical reactions in everyday life and the meaning of representations at the submicro and symbolic levels. In the investigation, a teaching approach entitled Life – Observations – Notations (LON) was developed, tested out and evaluated. The action research was conducted in collaboration with primary school chemistry teachers, the adviser for chemistry of the National Board of Education for Slovenia, and researchers in chemical education from the University of Ljubljana. The main findings suggest that as a consequence of the application of the LON approach in classroom teaching (1) students improved their interest in learning about chemical reactions, (2) students gained a more holistic understanding of chemical reactions, (3) students’ ability to connect observations at the macroscopic level with their understanding of the submicro and symbolic levels improved, whereby models were used to bridge the gap between macroscopic observations and symbolic notations of chemical equations and (4) action research contributed to the successful development and implementation of the LON approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature About Students’ Conceptions

  • Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., et al. (2004). Inquiry in science education: International perspectives. Science Education, 88, 397–419.

    Article  Google Scholar 

  • Barke, H. D. (1982). Students’ experiments with structural models. Empirical evidence for the practical use of models in the introduction of chemical symbols (Schülerversuche mit Strukturmodellen. Empirische Untersuchungen zum praktischen Einsatz von Modellen bei der Einführung von chemischen Symbolen). CU, 13, 4.

    Google Scholar 

  • Barke, H. D. (1997). The Structure-oriented approach. Demonstrated at the example of interdisciplinary teaching spatial abilities. In W. Gräber & C. Bolte (Eds.), Scientific literacy. Hamburg: IPN.

    Google Scholar 

  • Barke, H. D., & Wirbs, H. (2002). Structural units and chemical formulae chemistry education. Research and Practice in Europe, 3, 185–200.

    Article  Google Scholar 

  • Belt, S. T., Leisvik, M. J., Hyde, A. J., & Overton, T. L. (2005). Using a context-based approach to undergraduate chemistry teaching – a case study for introductory physical chemistry. Chemistry Education Research and Practice, 6(3), 166–179.

    Article  Google Scholar 

  • Bennett, J., & Lubben, F. (2006). Context-based chemistry: The Salters approach. International Journal of Science Education, 28(9), 999–1015.

    Article  Google Scholar 

  • BouJaoude, S. B. (1991). A study of the nature of students’ understandings about the concept of burning. Journal of Research in Science Teaching, 28, 689–704.

    Article  Google Scholar 

  • Bulte, A. M. W., Westbroek, H. B., de Jong, O., & Pilot, A. (2006). A research approach to designing chemistry education using authentic practices as contexts. International Journal of Science Education, 28(9), 1063–1086.

    Article  Google Scholar 

  • Calhoun, E. (1993). Action research: Three approaches. Educational Leadership, 51(2), 62–65.

    Google Scholar 

  • Chittleborough, G. D., Treagust, D. F., & Mocerino, M. (2002). Constraints to the development of first year university students’ mental models of chemical phenomena. Teaching and Learning Forum 2002, Focusing on the Student. Retrieved January 30, 2004, from http://www.ecu.edu.au/conferences/tlf/2002/pub/docs/Chittleborough.pdf.

  • Cochran-Smith, M., & Lytle, S. L. (1993). Inside/outside: Teacher research and knowledge. New York: Teachers College.

    Google Scholar 

  • de Jong, O. (2005). Research and teaching practice in chemical education: Living apart or together? Chemical Education International, 6(1). Retrieved January 15, 2006, from http://www.iupac.org/publications/cei.

  • Devetak, I. (2005). Explaining the latent structure of understanding submicropresentations in science. Doctoral dissertation. Ljubljana: Faculty of Education, University of Ljubljana.

    Google Scholar 

  • Ebenezer, J. V., & Erickson, G. L. (1996). Chemistry students’ conceptions of solubility: A phenomenography. Science Education, 80, 181–201.

    Article  Google Scholar 

  • Ferk Savec, V., Dolničar, D., Glažar, S. A., Sajovic, I., Šegedin, P., Urbančič, M., et al. (2007). Teachers’ identification of problems in teaching and learning of science (Učiteljeva identifikacija konkretnih problemov pri poučevanju naravoslovnih predmetov). In M. Vrtačnik & I. Devetak (Eds.), Action research for the improvement of the quality of teaching science (Akcijsko raziskovanje za dvig kvalitete pouka naravoslovnih predmetov) (pp. 11–34). Ljubljana: Naravoslovnotehniška fakulteta: Pedagoška fakulteta.

    Google Scholar 

  • Ferrance, E. (2000). Action research. Providence: Brown University.

    Google Scholar 

  • Gabel, D. (1993). Use of the particulate nature of matter in developing conceptual understanding. Journal of Chemical Education, 70(3), 193–197.

    Article  Google Scholar 

  • Gabel, D. (1998). The complexity of chemistry and implications for teaching. In B. J. Frazer & K. J. Tobin (Eds.), International handbook of science education (pp. 233–248). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Gabel, D. (1999). Improving teaching and learning through chemistry education research: A look to the future. Journal of Chemical Education, 76(4), 548–554.

    Article  Google Scholar 

  • Gilbert, J. K. (2006). On the nature of ‘‘context’’in chemical education. International Journal of Science Education, 28(9), 957–976.

    Article  Google Scholar 

  • Gilbert, J. K., de Jong, O., Justi, R., Treagust, D. F., & Van Driel, J. H. (2002). General preface. In J. K. Gilbert, O. de Jong, R. Justi, D. F. Treagust, & J. H. Van Driel (Eds.), Chemical education: towards research-based practice. Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Gott, R., & Duggan, S. (1996). Practical work: its role in the understanding of evidence in science. International Journal of Science Education, 18(7), 791–806.

    Article  Google Scholar 

  • Hesse, J. J., III, & Anderson, C. W. (1992). Students’ conceptions of chemical change. Journal of Research in Science Teaching, 29, 277–299.

    Article  Google Scholar 

  • Hinton, M. E., & Nakhleh, M. B. (1999). Students’ microscopic, macroscopic, and symbolic representations of chemical reactions. Chemistry and Materials Science, 4(5), 158–167.

    Google Scholar 

  • Hodson, D. (1990). A critical look at practical work in school science. School Science Review, 70, 33–40.

    Google Scholar 

  • Hodson, D. (1996). Practical work in school science: Exploring some directions for change. International Journal of Science Education, 18(7), 755–760.

    Article  Google Scholar 

  • Johnson, P. (2000). Children’s understanding of substances, part I: Recognising chemical change. International Journal of Science Education, 22, 719–737.

    Article  Google Scholar 

  • Johnson, P. (2002). Children’s understanding of substances, part 2: Explaining chemical change. International Journal of Science Education, 24(10), 1037–1049.

    Article  Google Scholar 

  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7, 75–83.

    Article  Google Scholar 

  • Johnstone, A. H. (2000). Teaching of chemistry. Logical or psychological? Chemistry Education: Research and Practice in Europe, 1, 9–17.

    Article  Google Scholar 

  • Juriševič, M., Glažar, S. A., Razdevšek-Pučko, C., & Devetak, I. (2008). Intrinsic motivation of pre-service primary school teachers for learning chemistry in relation to their academic achievement. International Journal of Science Education, 30(1), 87–108.

    Article  Google Scholar 

  • Kochendorfer, L. (1997). Active voice. Types of classroom teacher action research. Teaching and Change, 4(2), 157–174.

    Google Scholar 

  • Mahaffy, P. (2004). The future shape of chemistry education chemistry education. Research and Practice, 5, 229–245.

    Google Scholar 

  • McFarland, K. P., & Stansell, J. C. (1993). Historical perspectives. In L. Patterson, C.M. Santa, C.G. Short, & K. Smith (Eds.), Teachers are researchers: Reflection and action. Newark: International Reading Association.

    Google Scholar 

  • McKernan, J. (1988). The countenance of curriculum action research: Traditional, collaborative, and emancipatory-critical conceptions. Journal of Curriculum and Supervision, 3(3), 173–200.

    Google Scholar 

  • McTaggart, R. (1993). Action research: A short modern history. Geelong: Deakin University Press.

    Google Scholar 

  • Meheut, M., Saltiel, E., & Tiberghien, A. (1985). Pupils’ (11–12 year olds) conceptions of combustion. European Journal of Science Education, 7, 83–93.

    Article  Google Scholar 

  • Noffke, S. E., & Stevenson, R. B. (Eds.). (1995). Educational action research: Becoming practically critical. New York: Teachers College Press.

    Google Scholar 

  • Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., Ralle, B., et al. (2006). Chemie im Kontext’’– symbiotic implementation of a context-based teaching and learning approach. International Journal of Science Education, 28(9), 1041–1062.

    Article  Google Scholar 

  • Pfundt, H. (1982). Untersuchungen zu den Vorstellungen, die Schüler vom Aufbau der Stoffe entwickeln [Investigations of the concepts students develop about the structure of matter]. Der Physikunterricht, 26, 51–65.

    Google Scholar 

  • Pilot, A., & Bulte, A. M. W. (2006). The use of ‘‘Contexts’’as a challenge for the chemistry curriculum: Its successes and the need for further development and understanding. International Journal of Science Education, 28(9), 1087–1112.

    Article  Google Scholar 

  • Reason, P. (1994). Three approaches to participative inquiry. In N. Denzin, & Y. Lincoln (Eds.), Handbook of qualitative research (pp. 324–329). Thousand Oaks: Sage.

    Google Scholar 

  • Russell, J. W., Kozma, R. B., Jones, T., Wykoff, J., Marx, N., & Davis, J. (1997). Use of simultaneous-synchronized macroscopic, microscopic, and symbolic representations to enhance the teaching and learning of chemical concepts. Journal of Chemical Education, 74(3), 330–334.

    Article  Google Scholar 

  • Sanger, M. J., & Greenbowe, T. J. (2000). Addressing student misconceptions concerning electron flow in aqueous solutions with instruction including computer animations and conceptual change strategies. International Journal of Science Education, 22(5), 521–537.

    Article  Google Scholar 

  • Schwartz, A. T. (2006). Contextualised chemistry education: The American experience. International Journal of Science Education, 28(9), 977–998.

    Article  Google Scholar 

  • Taber, K. S. (2001). Building the structural concepts of chemistry: Some considerations from educational research. Chemistry Education: Research and Practice in Europe, 2, 123–158.

    Article  Google Scholar 

  • Tasker, R., Chia, W., Bucat, R., & Sleet, R. (1996). The VisChem project – visualising chemistry with multimedia. Chemistry in Australia, 63(9), 395–397.

    Google Scholar 

  • Thulstrup, E. W., & Thulstrup, H. D. (1996). Research training for development (pp. 320–327). Roskilde: University Press.

    Google Scholar 

  • Watts, H. (1985). When teachers are researchers, teaching improves. Journal of Staff Development, 6(2), 118–127.

    Google Scholar 

  • White, R. T. (1996). The link between the laboratory and learning. International Journal of Science Education, 18(7), 761–774.

    Article  Google Scholar 

  • Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32(5), 521–534.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Ferk Savec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Savec, V.F., Sajovic, I., Wissiak Grm, K.S. (2009). Action Research to Promote the Formation of Linkages by Chemistry Students Between the Macro, Submicro, and Symbolic Representational Levels. In: Gilbert, J.K., Treagust, D. (eds) Multiple Representations in Chemical Education. Models and Modeling in Science Education, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8872-8_14

Download citation

Publish with us

Policies and ethics