Seaquakes: Analysis of Phenomena and Modelling

The main manifestations of seaquakes and possible consequences of this phenomenon are described. The seaquake intensity scale is given. Historical evidence of seaquakes, originating in the Pacific Ocean and in the Mediterranean Sea, has been collected and analysed. Information is presented on instrumental observations of variations in the temperature fields in the ocean after submarine earthquakes. The possibility is estimated for a submarine earthquake to result in destruction of the temperature stratification in the ocean. Theoretical ideas of the parametric generation of surface waves, due to an underwater earthquake, are expounded. The results are described of laboratory experiments, devoted to the investigation of wave structures on the surface of a liquid and of the transformation of stable stratification in its column, in the case of bottom oscillations.


Underwater earthquak seaquake Faraday ripples stratification vertical exchange SST anomaly internal waves biogenes upwelling sea colour historical testimony turbulence mixing parametric resonance non-linear currents weather phenomena turbulence energy earthquake energy Mathieu equation instability increment experimental set-up bottom oscillations dynamic modes dissipative structures temperature profile turbulent exchange coefficient shadow method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal V. K., Mathur A., Sharma R., Agarwal N., Parekh A. (2007): A study of air-sea interaction following the tsunami of 26 December 2004 in the eastern Indian Ocean. Int. J. Remote Sens. 28(13–14) 3113–3119CrossRefGoogle Scholar
  2. Alexandrov V. E., Basov B. I., Levin B. W., Soloviev S. L. (1986):On the formation of parametric dissipative structures during seaquakes. DAN SSSR (in Russian), 289(5) 1071–1074Google Scholar
  3. Behrenfeld M. J., Falkowski P. G. (1997): Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42(1) 1–20Google Scholar
  4. Conkright M. E., Antonov J. I., Baranova O., et al. (2002): In: Sydney Levitus (ed) World Ocean Database 2001, vol. 1. Introduction. NOAA Atlas NESDIS. US Government Printing Office, Washington, DC, 42 Google Scholar
  5. Charles Darwin (1839): Darwin Charles: The Voyage of the Beagle. Wordsworth Editions, UKGoogle Scholar
  6. Degterev A. Kh. (2001): Earthquake effect on hydrogen sulfide contamination of the Black Sea. Russian Meteorology and Hydrology (12) 38–42Google Scholar
  7. Ermakova O. S., Ermakov S. A., Troitskaya Yu. I. (2007): Izvestiya — Atmos. Ocean Phys. 43(1) 86–94Google Scholar
  8. Ezersky A. B., Korotin P. I., Rabinovich M. I. (1985): Chaotic automodulation of two-dimensional structures on the surface of a liquid in the case of parameteric excitation. Lett. JETP (in Russian), 41(4) 129–131Google Scholar
  9. Filonov A. E. (1997): Researchers study tsunami generated by Mexican Earthquake. EOS. 78(3) 21–25CrossRefGoogle Scholar
  10. Higuera M., Vega J. M., Knobloch E. (2000): Coupled amplitude-streaming flow equations for nearly inviscid faraday waves in small aspect ratio containers. J. Non-linear Sci. 12 505–551Google Scholar
  11. Landau L. D., Lifshitz E. M. (1987): Fluid Mechanics, V.6 of Course of Theoretical Physics, 2nd English edition. Revised. Pergamon Press, Oxford-New York-Beijing-Frankfurt-San Paulo-Sydney-Tokyo-TorontoGoogle Scholar
  12. Levin B. W. (1996): Non-linear oscillating structures in the earthquake and seaquake dynamics. Chaos 6(3) 405–413CrossRefGoogle Scholar
  13. Levin B. W., Nosov M. A., Skachko S. N. (2001): SST and Chlorophyll Concentration Anomalies due to Submarine Earthquakes: Observations, Consequences and Generation Mechanism.In: Proceedings of Joint IOC—IUGG International Workshop Tsunami Risk Assessment Beyond 2000: Theory, Practice and Plans, Moscow, pp. 105–109Google Scholar
  14. Levin, B., Kaistrenko V., Kharlamov A., Chepareva M., Kryshny V. (1993): Physical processes in the ocean as indicators for direct tsunami registration from satellite, In: Proceedings of the IUGG/IOC International Tsunami Symposium Wakayama, Japan, pp. 309–319Google Scholar
  15. Levin B. W. (1996): Tsunamis and seaquakes in the ocean (in Russian). Priroda (5) 48–61Google Scholar
  16. Levin B. V., Likhachiova O. N., Uraevskii E. P. (2006): Variability in the thermal structure of ocean waters in periods of strong seismic activity. Izvestiya — Atmos. Ocean Phys. 42(5) 653–657Google Scholar
  17. Levin B. W., Soloviev S. L. (1985): Variations of the field of mass velocities in the pleistoseist zone of an underwater earthquake (in Russian). DAN SSSR, 285(4) 849–852Google Scholar
  18. Levin B. W., Trubnikov B. A. (1986): ‘Phase transitions’ in the lattice of parametric waves on the surface of an oscillating liquid (in Russian). Lett. JETP 44(7) 311–315Google Scholar
  19. Levin B. V., Nosov M. A., Pavlov V. P., Rykunov L. N. (1998): Cooling of the ocean surface as a result of seaquakes. Doklady Earth Sci. 358(1) 132–135Google Scholar
  20. Luchin V. A., Levin B. W., Nosov M. A., et al. (2000): Variations of water temperature at sea surface, caused by tectonic movements of the bottom (in Russian). Ln: DVNIGMI Jubilee issue. Dal'nauka, Vladivostok, pp. 172–182Google Scholar
  21. Monin A. S., Ozmidov R. V. (1981): Oceanic turbulence (in Russian). Hydrometeoizdat, LeningradGoogle Scholar
  22. Nosov M. A. (1996): On the Influence of Submarine Earthquakes on the Stratification Structure of the Ocean (in Russian). In: Theses of reports to All-Russian scientific conference ‘Interaction in the lithosphere—hydrosphere—atmosphere system’, Moscow, pp. 70–71Google Scholar
  23. Nosov M. A. (1998a): Effect of submarine earthquake on a stratified ocean. Moscow Univ. Phys. Bull. 53(4) 23–27 (1998)Google Scholar
  24. Nosov M. A. (1998b): Ocean surface temperature anomalies from underwater earthquakes. Vol-canol. Seismol. 19(3) 371–375Google Scholar
  25. Nosov M. A., Ivanov P. S. (1997): Location of different flow regime domains in oscillating fluid. Volcanol. and Seismol. 19 123–128Google Scholar
  26. Nosov M. A., Ivanov P. S. (1994): Dynamic modes in a hydrodynamic system with an oscillating lower boundary (in Russian). In: Theses of reports to Third International Symposium ‘Physical engineering problems of new equipment’. Centre of applied physics of the N. E. Bauman Moscow State Technical University, Moscow, p. 151Google Scholar
  27. Nosov M. A., Skachko S. N. (1999): Transformation of the stratification structure of the ocean as a result of the submarine earthquake. Moscow Univ. Phys. Bull. (5) 51–55Google Scholar
  28. Nosov M. A., Skachko S. N. (2000): Mechanism of transformation of the stratification structure of the ocean by the seismic bottom movements. Moscow Univ. Phys. Bull. (4) 66–68Google Scholar
  29. Nosov M. A., Skachko S. N. (2004): Non-linear steady flows generated by bottom domain oscillations. Vestnik Moskovskogo Universita. Ser. 3 Fizika Astronomiya (5) 57–60Google Scholar
  30. Nosov M. A., Ivanov P. S., Shelkovnikov N. K. (1996): Modeling of thermal water stratification behavior in a system with a mobile bottom. Volcanol. Seismol. 17 689–692Google Scholar
  31. Ouzounov D., Freund F. (2004): Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv Space Res 33 268–273CrossRefGoogle Scholar
  32. Ostrovsky L. A., Papilova I. A. (1974): On Non-linear acoustic wind (in Russian). Acous. J. (1) 79–86Google Scholar
  33. Pinegina T. K., Bourgeois J. (2001): Historical and paleo-tsunami deposits on Kamchatka, Russia: long-term chronologies and long-distance correlations. Nat. Hazards Earth Sys. Sci. 1(4) 177–185CrossRefGoogle Scholar
  34. Pinegina T. K., Melekestsev I.V., Braitseva O. A., et al. (1997): Traces of prehistoric tsunamis on the eastern coast of Kamchatka (in Russian). Priroda (4) 102–106Google Scholar
  35. Puzyrev N. N. (1997): Methods and objects of seismic studies (in Russian). Publishing House of RAS Siberian Branch, NITs OIGGM, NovosibirskGoogle Scholar
  36. Rabinovich A. B., Trubetskov D. I. (1984): Introduction to the theory of oscillations and waves (in Russian). Nauka, MoscowGoogle Scholar
  37. Ranguelov B., Bearnaerts A. (1999): The Erzincan 1939 earthquake—a sample of the multidisaster event. In: Book of Abstracts, 2nd Balkan Geoph. Congr. and Exhibition. Istanbul, pp. 62–63, 5–9 JulyGoogle Scholar
  38. Richter C. F. (1963): Elementary seismology (in Russian). Foreign literature Publishing House MoscowGoogle Scholar
  39. Soloviev S. L., Go C. N. (1974): Catalogue of tsunamis on the western coast of the Pacific Ocean (173–1968) (in Russian). Nauka, MoscowGoogle Scholar
  40. Soloviev S. L., Go C. N. (1975): Catalogue of tsunamis on the eastern coast of the Pacific Ocean (1513–1968) (in Russian). Nauka, MoscowGoogle Scholar
  41. Soloviev S. L., Go C. N., Kim Kh. S. (1986): Catalogue of tsunamis in the Pacific Ocean, 1969–1982 (in Russian). Izd. MGK, USSR AS, MoscowGoogle Scholar
  42. Soloviev S. L., Go C. N., Kim Kh. S., et al. (1997): Tsunamis in the Mediterranean Sea, 2000 BC— 1991 AD (in Russian), Nauchnyi mir, MoscowGoogle Scholar
  43. Vega J. M., Knobloch E., Martel C. (2001): Nearly inviscid Faraday waves in annular containers of moderately large aspect ratio. Physica D 154 313–336CrossRefGoogle Scholar
  44. Yurur M. T. (2006): The positive temperature anomaly as detected by Landsat TM data in the eastern Marmara Sea (Turkey): possible link with the 1999 Izmit earthquake. Int. J. of Remote Sens. 27(6) 1205–1218.CrossRefGoogle Scholar
  45. Zaichenko M. Yu., Levin B. V., Pavlov V. P., Yakubenko V. G. (2002): Cooling effect of the Black Sea active layer recorded after the earthquake. Izvestiya — Atmos. Ocean Phys. 38(6) 695–699Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Personalised recommendations