Advertisement

Comparison Of Atmospheric Chemical Mechanisms For Regulatory And Research Applications

  • D. Luecken
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Four general types of chemical mechanisms that are used in atmospheric chemistry models are summarized, with a short description of the applications for which each type is most often used. Differences in the techniques used to develop these mechanisms can lead to some differences in their predictions of atmospheric pollutant concentrations. Three chemical mechanisms are used as an example to demonstrate how these predictions can differ both for absolute concentrations of pollutants and for their sensitivities of ozone and PM2.5 to emission reductions.

Keywords

Chemical mechanisms CB4 CB05 SAPRC-99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azzi, M., 2006, The Generic Reaction Set (GRS) Model for ozone, presented at the International Conference on Atmospheric Chemistry Mechanisms, Davis, CA, December 6, 2006; http://pah.cert.ucr.edu/carter/Mechanism_Conference/15%20B%20Azzi.pdf
  2. Byun, D. and Schere, K.L., 2006, Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling system. Appl. Mech Rev. 59: 51–77.CrossRefGoogle Scholar
  3. Carter, W.P.L., 2000, Implementation of the SAPRC-99 Chemical Mechanism into the Models-3 Framework. Report to the United States Environmental Protection Agency; http://www.cert.ucr.edu/carter/absts.htm#s99mod3
  4. Carter, W.P.L., 2007a, Conference Summary International Conference on Atmospheric Chemical Mechanisms, Davis, CA, December 6–8, 2006; http://pah.cert.ucr.edu/carter/Mechanism_Conference/Conference_Summary.pdf
  5. Carter, W.P.L., 2007b, Documentation of the SAPRC-07 Chemical Mechanism and Updated Ozone Reactivity Scales. Final report to the California Air Resources Board, June 15, 2007; http://pah.cert.ucr.edu/carter/SAPRC/saprc07.doc
  6. Dodge, M.C., 2000, Chemical oxidant mechanisms for air quality modeling: critical review. Atmos. Environ. 34: 2103–2130.CrossRefGoogle Scholar
  7. Faraji, M., Kimura, Y., McDonald-Buller, E., and Allen, D., 2008, Comparison of the carbon bond and SAPRC photochemical mechanisms under conditions relevant to southeast Texas, Atmos. Environ. 42(23): 5821–5836.CrossRefGoogle Scholar
  8. Gery, M.W., Whitten, G.Z., Killus, J.P., and Dodge, M.C., 1989, A photochemical kinetics mechanism for urban and regional scale computer modeling, J. Geophys. Res. 94(D10): 12925–12956.CrossRefGoogle Scholar
  9. Gipson, G.L. and Young, J.O., 1999, Gas phase chemistry, in: Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System.D.W. Byun and J.K.S. Ching (eds.), U.S. Environmental Protection Agency, Washington, DC, EPA600/R99/030.Google Scholar
  10. Gross, A. and Stockwell, W., 2003, Comparison of the EMEP, RADM2 and RACM mechanisms, J. Atmos. Chem. 44: 151–170.CrossRefGoogle Scholar
  11. Jenkin, M.E., Saunders, S.M., Wagner, V., and Pilling, M.J., 2003, Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. Phys. 3: 181–193.Google Scholar
  12. Jimenez, P., Baldasano, J.M., and Dabdub, D., 2003, Comparison of photochemical mechanisms for air quality modeling. Atmos. Environ. 37: 4179–4194.CrossRefGoogle Scholar
  13. Kuhn, M., Builtjes, P.J.H., Poppe D., Simpson, D., Stockwell, W.R., Andersson-Skold, Y., Baart, A., Das, M., Fiedler, F., Hov, O., Kirchner, F., Makar, P.A., Milford, J.B., Roemer, M.G.M., Ruhnke, R., Strand, A.B. Vogel, B., and Vogel, H., 1998, Intercomparison of the gas-phase chemistry in several chemistry and transport models, Atmos. Environ. 32(4): 693–709.CrossRefGoogle Scholar
  14. Luecken, D.J., Phillips, S., Sarwar, G., and Jang, C., 2008, Effects of using the CB05 vs. SAPRC99 vs. CB4 chemical mechanism on model predictions: ozone and gas-phase photochemical precursor concentrations, Atmos. Environ.(this volume).Google Scholar
  15. Saunders, S.M., Jenkin, M.E., Derwent, R.G., and Pilling, M.J., 2003, Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys. 3: 161–180.CrossRefGoogle Scholar
  16. Seinfeld, J.H. and Pandis, S.N., 1998, Atmospheric Chemistry and Physics. Wiley, New York, pp. 529–541.Google Scholar
  17. Stockwell, W.R., Kirchner, F., Kuhn, M., and Seefeld, S., 1997, A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res., 102(D22): 25847–25879.CrossRefGoogle Scholar
  18. U.S. EPA, 2006, Air Quality Criteria for Ozone and Related Photochemical Oxidants, U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-05/004aF-cF; http://cfpub.epa.gov/ncea/cfm/ recordisplay.cfm?deid=149923Google Scholar
  19. U.S. EPA, 2004, Air Quality Criteria for Particulate Matter, U.S. Environmental Protection Agency, Washington, DC, EPA600/P-99/002aF-bF; http://cfpub2.epa.gov/ncea/cfm/recordisplay.cfm?deid= 87903Google Scholar
  20. Yarwood, G., Rao, S., Yocke, M., and Whitten, G.Z., 2005, Updates to the Carbon Bond Chemical Mechanism: CB05.Final Report to the US EPA, December 8, 2005; http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • D. Luecken
    • 1
  1. 1.Atmospheric Modeling DivisionU.S. Environmental Protection AgencyResearch Triangle Park

Personalised recommendations