Advertisement

Simulating Atmospheric Gas Phase Chemistry: Uncertainties And Mechanism Reduction Problems

  • J. M. Pilling
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Chemical mechanisms are required in the modeling of atmospheric processes such as regional ozone formation and climate change. The master chemical mechanism (MCM) is an almost explicit mechanism describing the atmospheric oxidation of 135 primary emitted volatile organic compounds (VOCs). The basis of the protocols used for constructing the MCM is described, together with the website used for dissemination. The components of the MCM require evaluation against simulation chamber data. An approach to the conduct of such evaluations is discussed, which includes assessment of the uncertainties in models constructed using the MCM. The MCM is too large for use in atmospheric models based on an Eulerian approach. Methods for reducing and lumping the MCM are outlined.

Keywords

Tropospheric oxidation ozone formation chemical mechanisms uncertainty analysis mechanism reduction and lumping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloss, C., Wagner, V., Bonzanini, A., Jenkin, M.E., Wirtz, K., Martin-Reviejo, M., and Pilling, M.J., 2005a, Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data, Atmos. Chem. Phys., 5: 623–639.Google Scholar
  2. Heard, D.E., Wirtz, K.,Martin-Reviejo, M., Rea, G., Wenger, J.C., and Pilling, M.J., 2005b, Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons, Atmos. Chem. Phys., 5: 641–664.Google Scholar
  3. Campolongo, F. and Saltelli, A., 1997, Sensitivity analysis of an environmental model an application of different analysis methods, Reliab. Eng. Syst. Safe., 57: 49–69.CrossRefGoogle Scholar
  4. Carslaw, N., Jacobs, P.J., and Pilling, M.J., 1999, Modelling OH, HO2 and RO2 radicals in the marine boundary layer: 2. Mechanism reduction and uncertainty analysis, J. Geophys. Res. D, 104: 30257–30273.CrossRefGoogle Scholar
  5. Helton, J.C. and Davis, F.J., 2002, Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, SAND2001-0417, Sandia National Laboratories, Albuquerque, New Mexico.Google Scholar
  6. Jenkin, M.E., Saunders, S.M., Derwent, R.G., and Pilling, M.J., 2002, Development of a reduced speciated VOC degradation mechanism for use in ozone models, Atmos. Environ., 36: 4725–4734.CrossRefGoogle Scholar
  7. Jenkin, M.E., Saunders, S.M., Wagner, V., and Pilling, M.J., 2003, Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. Phys., 3: 181–193.Google Scholar
  8. Pöschl, U., von Kuhlmann, R., Poisson, N., and Crutzen, P.J., 2000, Development and intercomparison of condensed isoprene oxidation mechanisms for global atmospheric modelling, J. Atmos. Chem., 37: 29–52.CrossRefGoogle Scholar
  9. Ravishankara, A.R., Dunlea, E.J., Blitz, M.A., Dillon, T.J., Heard, D.E., Pilling, M.J., Strekowski, R.S.,Nicovich, J.M., and Wine, P.H., 2002, Redetermination of the rate coefficient for the reaction of O(1D) with N2, Geophys. Res. Lett., 29: 1745–1752.CrossRefGoogle Scholar
  10. Saltelli, A., Scott, E.M., and Chen, K., 2000, Sensitivity Analysis, Wiley, Chichester.Google Scholar
  11. Saunders, S.M., Jenkin, M.E., Derwent, R.G., and Pilling, M.J., 2003, Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3: 161–180.Google Scholar
  12. Sommariva, R., Haggerstone, A.L., Carpenter, L.J., Carslaw, N., Creasey, D.J., Heard, D.E., Lee, J.D., Lewis, A.C., Pilling, M.J., and Zador, J., 2004, OH and HO2 chemistry in clean marine air during SOAPEX-2, Atmos. Chem. Phys., 4: 839–856.Google Scholar
  13. Sommariva, R., Bloss, W.J., Brough, N., Carslaw, N., Flynn, M., Haggerstone, A.-L., Hopkins, J.R.,Lee, J.D., Lewis, A.C., McFiggans, G., Monks, P.S., Penkett, S.A., Pilling, M.J., Plane, J.M.C.,Read, K.A., Saiz-Lopez, A., Rickard, A.R., and Williams, P.I., 2006, OH and HO2 chemistry during NAMBLEX: Roles of oxygenates, halogen oxides and heterogeneous uptake, Atmos. Chem. Phys., 6: 1135–1153.Google Scholar
  14. Turányi, T., 1990, Sensitivity analysis of complex kinetic systems — tools and applications, J. Math. Chem., 5, 203–248.CrossRefGoogle Scholar
  15. Turányi, T., Zalotai, L., Dóbé, S., and Bérces, T., 2002, Effect of the uncertainty of kinetic and thermodynamic data on methane flame simulation results, Phys. Chem. Chem. Phys., 4: 2568–2578.CrossRefGoogle Scholar
  16. Whitehouse, L., Tomlin, A.S., and Pilling, M.J., 2004a, Systematic reduction of complex tropospheric chemical mechanisms, Part I: Sensitivity and time-scale analysis, Atmos. Chem. Phys., 4: 2025–2056.CrossRefGoogle Scholar
  17. Whitehouse, L., Tomlin, A.S., and Pilling, M.J., 2004b, Systematic Reduction of complex tropospheric chemical mechanism, Part II: Lumping using a time-scale based approach, Atmos. Chem. Phys., 4: 2057–2081.Google Scholar
  18. Zádor, J., Wagner, V., Wirtz, K., and Pilling M.J., 2005, Quantitative assessment of uncertainties for a model of tropospheric ethene oxidation using the European Photochemical Reactor, Atmos. Environ.,39: 2805–2817.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • J. M. Pilling
    • 1
  1. 1.School of ChemistryUniversity of LeedsLeeds

Personalised recommendations