Undiscovered Chemistry – Is It Important For Mechanisms And Models?

  • K. J. Rudzinski
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Recent examples of discovering chemical pathways in the atmosphere are used to answer the slightly provocative question of the title. Heterogeneous transformation of isoprene and products of its gas phase oxidation illustrate an explicit approach to undiscovered chemistry, which begins with detecting components in atmospheric samples collected in the field. Aqueous-phase transformation of isoprene and the role sulfate radicals play in transformation of dimethylsulfide present the implicit approach, which begins with intuitive choice of reactions to be studied in a laboratory.


Atmospheric chemistry isoprene SOA organic aerosol chemical mechanism organosulfates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altieri, K. E., Carlton, A. M., Lim, H.-J., Turpin, B., and Seitzinger, S. P., 2006, Evidence for oligomer formation in clouds: Reactions of isoprene oxidation products,Environ. Sci. Technol.40:4956–4960.CrossRefGoogle Scholar
  2. Barnes, I. and Rudzinski, K. J., eds, 2006,Environmental Simulation Chambers: Application to Atmospheric Chemical Processes, Springer, Dordrecht.Google Scholar
  3. Batsaikhan, A., 2007,Reactive Organic Species on Natural Dust, thesis, Unversität Heidelberg, Heidelberg, pp. 43–60.Google Scholar
  4. Becker, K. H., 2007, discussion at this ARWGoogle Scholar
  5. Böge, O., Miao, Y., Plewka, A., and Herrmann, H., 2006, Formation of secondary organic particle phase compounds from isoprene gas-phase oxidation products: An aerosol chamber and field study,Atmos. Environ.40:2501–2509.CrossRefGoogle Scholar
  6. Bonn, B., Korhonen, H., Petäjä, T., Boy, M., and Kulmala, M., 2007, Understanding the formation of biogenic secondary organic aerosol from α-pinene in smog chamber studies: Role of organic peroxy radicals,Atmos. Chem. Phys. Discuss.7:3901–3939.Google Scholar
  7. Cahill, T. M., Seaman, V. Y., Charles, M. J., Holzinger, R., and Goldstein, A. H., 2006, Secondary organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra Nevada Mountains of California,J. Geophys. Res.111:D16312, doi:10.1029/2006JD007178.CrossRefGoogle Scholar
  8. CAPRAM (January 21, 2008), Chemical Aqueous Phase Radical Mechanism,
  9. Carlton, A. G., Turpin, B. J., Lim, H., Altieri, K. E., and Seitzinger, S., 2006, Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids inclouds,Geophys. Res. Lett.33:L06822, doi:10.1029/2005GL025374.CrossRefGoogle Scholar
  10. Chan, A. W. H., Kroll1, J. H., Ng, N. L., and Seinfeld, J. H., 2007, Kinetic modeling of secondary organic aerosol formation: Effects of particle- and gas-phase reactions of semivolatile products,Atmos. Chem. Phys.7:4135–4147.Google Scholar
  11. Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., and Maenhaut, W., 2004a, Formation of secondary organic aerosols through photooxidation of isoprene,Science 303:1173–1176.CrossRefGoogle Scholar
  12. Claeys, M., Wang, W., Ion, A. C., Kourtchev, I., Gelencser, A., and Maenhaut, W., 2004b, Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide,Atmos. Environ.38:4093–4098.CrossRefGoogle Scholar
  13. Clements, A. L. and Seinfeld, J. H., 2007, Detection and quantification of 2-methyltetrols in ambient aerosol in the southeastern United States,Atmos. Environ.41:1825–1830.CrossRefGoogle Scholar
  14. Czoschke, N. M., Jang, M., and Kamens, R. M., 2003, Effect of acidic seed on biogenic secondary organic aerosol growth,Atmos. Environ.37:4287–4299.CrossRefGoogle Scholar
  15. Decesari, S., Fuzzi, S., Facchini, M. C., Mircea, M., Emblico, L., Cavalli, F., Maenhaut, W., Chi, X., Schkolnik, G., Falkovich, A., Rudich, Y., Claeys, M., Pashynska, V., Vas, G., Kourtchev, I., Vermeylen, R., Hoffer, A., Andreae, M. O., Tagliavini, E., Moretti, F., and Artaxo, P., 2006, Characterization of the organic composition of aerosols from Rondonia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds,Atmos. Chem. Phys.6:375–402 (discusion paper: 2005,Atmos. Chem. Phys. Discuss.5:5687–5749).Google Scholar
  16. Dommen, J., Metzger, A., Duplissy, J., Kalberer, M., Alfarra, M. R., Gascho, A., Weingartner, E., Prevot, A. S. H., Verheggen, B., and Baltensperger, U., 2006, Laboratory observation of oligomers in the aerosol from isoprene/NOxphotooxidation,Geophys. Res. Lett.33:L13805, doi:10.1029/ 2006GL026523.CrossRefGoogle Scholar
  17. Edney, E. O., Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Wang, W., and Claeys, M., 2005, Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOX/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States,Atmos. Environ.39:5281–5289.CrossRefGoogle Scholar
  18. Elkanzi, E. M. and Bee Kheng, G., 2000, H2O2/UV degradation kinetics of isoprene in aqueous solution,J. Hazard. Mater.73:55–62.CrossRefGoogle Scholar
  19. Ervens, B., Feingold, G., Frost, G. J., and Kreidenweis S. M., 2004, A modeling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production,J. Geophys. Res.109:D15205, doi:10.1029/2003JD004387.CrossRefGoogle Scholar
  20. Flyunt, R., Makogon, O., Schuchmann, M. N., Asmus K.-D., and von Sonntag, C., 2001, OH-radical-induced oxidation of methanesulfinic acid. The reactions of the methanesulfonyl radical in the absence and presence of dioxygen,J. Chem. Soc. Perkin Trans.2:787–792.Google Scholar
  21. Goldstein, A. H. and Galbally, I. E., 2007, Known and unexplored organic constituents in the Earth's atmosphere,Environ. Sci. Technol.40:1514–1521.Google Scholar
  22. Gómez González, Y., Vermeylen, R., Szmigielski, R., Surratt, J. D., Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Edney, E. O., Maenhaut, W., and Claeys, M., 2007, Characterisation of organosulphates from the photo-oxidation of isoprene in ambient PM2.5 aerosol by LC/(-)ESI-linear ion trap mass spectrometry, European Aerosol Conference 2007, Salzburg, Abstract T01A018.Google Scholar
  23. Grgic, I., Losno, R., and Pasiuk-Bronikowska, W., 2003, S(IV) oxidation as a source of sulphate aerosols, in:EUROTRAC-2 CMD Final Report 2003, Part III-1, U. Schurath and K.-H. Naumann, eds, (January 21st, 2008) Scholar
  24. Gros, V., 2007, personal communication.Google Scholar
  25. Heald, C., Henze, D. K., Horowitz, L. W., Feddema, J., Lamarque, J.-F., Guenther, A., Hess, P. G., Vitt, F., Seinfeld, J. H., Goldstein, A. H., and Fung, I., 2008, Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land-use change,J. Geophys Res.113:D05211, doi:10.1029/2007JD009092.CrossRefGoogle Scholar
  26. Henze, D. K. and Seinfeld, J. H., 2006, Global secondary organic aerosol from isoprene oxidation,Geophys. Res. Lett.33:L09812, doi:10.1029/2006GL025976.CrossRefGoogle Scholar
  27. Herrmann, H., 2003, Kinetics of aqueous phase reactions relevant for atmospheric chemistry,Chem. Rev 103:4691–4716.CrossRefGoogle Scholar
  28. Herrmann, H., Tilgner, A., Barzaghi, P., Majdik, Z., Gligorovski, S., Poulain, L., and Monod, A., 2005, Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0,Atmos. Environ.39:4351–4363.CrossRefGoogle Scholar
  29. Horowitz, L. W., Fiore, A. M., Milly, G. P., Cohen, R. C., Perring, A., Wooldridge, P. J., Hess, P. G., Emmons, L. K., and Lamarque, J.-F., 2007, Observational constraints on the chemistry of isoprene nitrates over the eastern United States,J. Geophys. Res.112:D12S08, doi:10.1029/2006JD007747.CrossRefGoogle Scholar
  30. Huie, R. E. and Sieck, L. W., 1999, SOx radical monoanions—reactions in solutions and in the gas phase, in:S-Centered Radicals, Z. B. Alfassi, ed, Wiley, Chichester, pp. 141–191.Google Scholar
  31. Ion, A. C., Vermeylen, R., Kourtchev, I., Cafmeyer, J., Chi, X., Gelencser, A., Maenhaut, W., and Claeys, M., 2005, Polar organic compounds in rural PM2.5 aerosols from K-puszta, Hungary, during a 2003 summer field campaign: Sources and diel variations,Atmos. Chem. Phys.5:1805–1814.Google Scholar
  32. Jang, M., Czoschke, N. M., Lee, S., and Kamens, R. M., 2002, Aerosol production by acid-catalyzed particle-phase reactions,Science 298:815–817.CrossRefGoogle Scholar
  33. Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J., 2005, Organic aerosol and global climate modelling: A review,Atmos. Chem. Phys.5:1053–1123 (discussion paper: 2004,Atmos. Chem. Phys. Discuss.4:5855–6024).CrossRefGoogle Scholar
  34. Kalberer, M., Sax, M., and Samburova, V., 2006, Molecular size evolution of oligomers in organic aerosols collected in urban atmospheres and generated in a smog chamber,Environ. Sci. Technol.40:5917–5922.CrossRefGoogle Scholar
  35. Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H., and Jaoui, M., 2006, Secondary organic carbon and aerosol yields from the irradiations of isoprene and α-pinene in the presence of NOxand SO2,Environ. Sci. Technol.40:3807–3812.CrossRefGoogle Scholar
  36. Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., Jaoui, M., and Edney, E. O., 2007, Ozone- isoprene reaction: Re-examination of the formation of secondary organic aerosol,Geophys. Res. Lett 34:L01805, doi:10.1029/2006GL027485.CrossRefGoogle Scholar
  37. Kourtchev, I., Ruuskanen, T., Maenhaut, W., Kulmala, M., and Claeys, M., 2005, Observation of 2-methyltetrols and related photo-oxidation products of isoprene in boreal forest aerosols from Hyytiälä, Finland,Atmos. Chem. Phys.5:2761–2770.Google Scholar
  38. Kourtchev, I., Ruuskanen, T., Keronen, P., Sogacheva, L., Dal Maso, M., Reissell, A., Chi, X., Vermeylen, R., Kulmala, M., Maenhaut, W., and Claeys, M., 2007, Determination of isoprene and α-/β-pinene oxidation products in boreal forest aerosols from Hyytiälä, Finland: Diel variations and possible link with particle formation events,Plant Biol. (Stuttg), doi:10.1055/s-2007-964945.Google Scholar
  39. Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H., 2005, Secondary organic aerosol formation from isoprene photooxidation under high-NOxconditions,Geophys. Res. Lett.32:L18808, doi:10.1029/2005GL023637.CrossRefGoogle Scholar
  40. Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H., 2006, Secondary organic aerosol formation from isoprene photooxidation,Environ. Sci. Technol.40:1869–1877.CrossRefGoogle Scholar
  41. Lawrence, M. G., Hov, Ø., Beekmann, M., Brandt, J., Elbern, H., Eskes, H., Feichter, H., and Takigawa, M., 2005, The chemical weather,Environ. Chem.2:6–8CrossRefGoogle Scholar
  42. Liggio, J., Li, S.-M., and McLaren, R., 2005, Heterogeneous reactions of glyoxal on particulate matter: Identification of acetals and sulfate esters,Environ. Sci. Technol.39:1532–1541.CrossRefGoogle Scholar
  43. Liggio, J., Li, S.-M., Brook, J. R., and Mihele, C., 2007, Direct polymerization of isoprene and α-pinene on acidic aerosols,Geophys. Res. Lett.34:L05814, doi:10.1029/2006GL028468.CrossRefGoogle Scholar
  44. Lim, H., Carlton, A. G., and Turpin, B. J., 2005, Isoprene forms secondary organic aerosol through cloud processing: Model simulations,Environ. Sci. Technol.39:4441–4446.CrossRefGoogle Scholar
  45. Limbeck, A., Kulmala, M., and Puxbaum, H., 2003, Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles,Geophys. Res. Lett.30:1996, doi:10.1029/2003GL017738 09CrossRefGoogle Scholar
  46. Matsunaga, S. N., Wiedinmyer, C., Guenther, A. B., Orlando, J. J., Karl, T., Toohey, D. W., Greenberg, J. P., and Kajii, Y., 2005, Isoprene oxidation products are a significant atmospheric aerosol component,Atmos. Chem. Phys. Discuss.5:11143–11156.Google Scholar
  47. Matsunaga, S. N., Guenther, A. B., Izawa, Y., Wiedinmyer, C., Greenberg, J. P., Kawamura, K., 2007, Importance of wet precipitation as a removal and transport process for atmospheric water soluble carbonyls,Atmos. Environ.41:790–796.CrossRefGoogle Scholar
  48. MCM (January 21, 2008), Master Chemical Mechanism v3,
  49. Meshkidze, N. and Nenes, A., 2006, Phytoplankton and cloudiness in the Southern Ocean,Science 314:1419–1423 (corrected July 6, 2007), doi:10.1126/science.1131779.CrossRefGoogle Scholar
  50. Neta, P., Huie, R. E., and Ross, A. B., 1988, Rate constants for reactions of inorganic radicals in aqueous solution,J. Phys. Chem. Ref. Data 17(3):1027–1284.Google Scholar
  51. Ng, N. L., Kroll, J. H., Keywood, M., Bahreini, R., Varutbangkul, V., Flagan, R. C., and Seinfeld, J. H., 2006, Contribution of first- versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons,Environ. Sci. Technol.40:2283–2297.CrossRefGoogle Scholar
  52. Niedojadlo, A., Becker, K. H., Kurtenbach, R., and Wiesen, P., 2007a, The contribution of traffic and solvent use to the total NMVOC emission in a German city derived from measurements and CMB modelling,Atmos. Environ.41:7108–7126.CrossRefGoogle Scholar
  53. Niedojadlo, A., 2007b, Field Observations Versus Emission Predictions for NMVOCs, A chapter in this book.Google Scholar
  54. Pedersen, T. and Sehested, K., 2001, Rate constants and activation energies for ozonolysis of isoprene, methacrolein and methyl-vinyl-ketone in aqueous solution: Significance to the in-cloud ozonation of isoprene,Int. J. Chem. Kin.33:182–190.CrossRefGoogle Scholar
  55. Pilling, M., 2007, discussion at this ARW.Google Scholar
  56. Pun, B. K. and Seigneur, C., 2007, Investigative modeling of new pathways for secondary organic aerosol formation,Atmos. Chem. Phys.7:2199–2216.Google Scholar
  57. Ross, A. B. and Neta, P., 1979, Rate constants for reactions of inorganic radicals in aqueous solution, NSRDS-NB-65, National Bureau of Standards, Washington.Google Scholar
  58. Rudzinski, K. J., 2004, Degradation of isoprene in the presence of sulphoxy radicals,J. Atmos. Chem.48:191–216.CrossRefGoogle Scholar
  59. Rudzinski, K. J., 2006, Heterogeneous and aqueous-phase transformation of isoprene, in:Environmental Simulation Chambers: Application to Atmospheric Chemical Processes, I. Barnes and K. J. Rudzinski, eds, Springer, Dordrecht, pp. 261–277.CrossRefGoogle Scholar
  60. Rudzinski, K. J. and Gmachowski, L., 2007, Aqueous-phase source of atmospheric organosulphates? in:Aerosols—Properties, Processes and Climate, INTROP Conference, Heraklion.Google Scholar
  61. Rudzinski, K. J. and Pasiuk-Bronikowska, W., 2001, Isoprene inhibition of S(IV) autoxidation initiated by peroxydisulphate, in:Transport and Chemical Transformation in the Troposphere, P. M. Midgley, M. Reuther, and M. Williams, eds, Springer, Berlin, pp. 1–4 (on CD).Google Scholar
  62. Rudzinski, K. J., Pasiuk-Bronikowska, W., and Królik, J., 2000, Mechanistic study of isoprene inhibition of S(IV) autoxidation in aqueous phase, in:Proc. EC/EUROTRAC Joint Workshop: ChemicalProcesses and Mechanisms — Chemical Mechanism Development, M. J. Rossi and E.-M. Rossi, eds, Ecole Polytechnique de Lausanne, Lausanne, pp. 148–151.Google Scholar
  63. Rudzinski, K. J., Pasiuk-Bronikowska, W., and Królik, J., 2002a, Interactions of isoprene with aqueous phase sulphur species — kinetic effects, in:A Changing Atmosphere, J. Hjorth, F. Raes, and G. Angeletti, eds, European Commission, Brussels, pp. 1–5 (on CD).Google Scholar
  64. Rudzinski, K. J., Pasiuk-Bronikowska, W., and Królik, J., 2002b, Chemical interactions of precursors of tropospheric aerosols —SO2and isoprene, in:Transport and Chemical Transformation in the Troposphere, P. M. Midgley and M. Reuther, eds, Margraf Verlag, Weikersheim, and Backhuys Publishers, Leiden, pp. 1–5 CMD-13 (on CD).Google Scholar
  65. Rudzinski, K. J., Pasiuk-Bronikowska, W., and Królik, J., 2003, Degradation of isoprene during aqueous autoxidation of SO2under various conditions of initiation, in:Shaping the Future of Atmospheric Research in Europe, R. Losno et al., eds, Editions Paris 7 Denis Diderot, Paris, pp. 151–155.Google Scholar
  66. Rudzinski, K. J., Ziajka, J., Gmachowski, L., and Szeremeta, E., 2006, Reactions of sulphoxy radicals, a mini-review, in:The Routes for Organics Oxidation in the Atmosphere and Its Implications to the atmosphere, INTROP Conference, Alpe d'Huez, France.Google Scholar
  67. Rudzinski, K. J., Ziajka, J., Gmachowski, L., and Szeremeta, E., 2007, Cross-activation of air pollutants in urban environment, in:Proc. 6th International Conference on Urban Air Quality, R. S. Sokhi and M. Neophytou, eds, University of Hertfordshire, Hatfield, pp. 12.3–12.6 (on CD).Google Scholar
  68. Ruppert, L. and Becker, K. H., 2000, A product study of the OH radical-initiated oxidation of isoprene: Formation of C5-unsaturated diols,Atmos. Environ.,34:1529–1542.CrossRefGoogle Scholar
  69. Seinfeld, J. H. and Pankow, J. F., 2003, Organic atmospheric particulate material,Annu. Rev. Phys. Chem.54:121–140.CrossRefGoogle Scholar
  70. Schürmann, G., Schäfer, K., Jahn, C., Hoffmann, H., Bauerfeind, M., Fleuti, E., and Rappenglück, B., 2007, The impact of NOx, CO and VOC emissions on the air quality of Zurich airport,Atmos. Environ.41:103–118.CrossRefGoogle Scholar
  71. Schurath, U., Peeters, J., Wayne, R. P., Moortgat, G. K., Grgic, I., George, C., Herrmann, H., and Poppe, D., 2003, Chemical Mechanism Development, overview of subproject CMD, in:Towards Cleaner Air for Europe — Science, Tools and Applications Part 2. Overviews from the Final Reports of the EUROTRAC-2 Subprojects, P. M. Midgley and M. Reuther, eds, Margraf: Weikersheim, pp. 73–98, also available: (January 21, 2008).
  72. Silva Santos, L., Dalmázio, I., Eberlin, M. N., Claeys, M., and Augusti, R., 2006, Mimicking the atmospheric OH-radical-mediated photooxidation of isoprene: Formation of cloud-condensation nuclei polyols monitored by electrospray ionization mass spectrometry,Rapid Commun. Mass Spectrom.20:2104–2108.CrossRefGoogle Scholar
  73. Smith, M. B. and March, J., 2007,March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed., JWiley, Hoboken, p. 1164.Google Scholar
  74. Son, S. J., Choi, H. W., Choi, D. K., Lee, S. D., Kim, H. S., and Kim, S. W., 2005, Selective absorption of isoprene from C5mixtures by π complexation with Cu(I),Ind. Eng. Chem. Res.44:4717–4720.CrossRefGoogle Scholar
  75. Sorokin, A. and Arnold, F., 2006, Organic positive ions in aircraft gas-turbine engine exhaust,Atmos. Environ.40:6077–6087.CrossRefGoogle Scholar
  76. Surrat, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A., Szmigielski, R., Vermeylen, R., Maenhaut, W., Flagan, R. C., Claeys, M., and Seinfeld, J. H., 2006, Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene,J. Phys. Chem.110:9665–9690.Google Scholar
  77. Surrat, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T. E., Edney, E. O., and Seinfeld, J. H., 2007a, Effect of acidity on secondary organic aerosol formation from isoprene,Environ. Sci. Technol.41:5363–5369.CrossRefGoogle Scholar
  78. Surrat, J. D., Kroll, J. H., Kleindienst, T. E., Edney, E. O., Claeys, M., Sorooshian, A., Ng, N. L., Offenberg, J. H., Lewandowski, M., Jaoui, M., Flagan, R. C., and Seinfeld, J. H., 2007b, Evidence for organosulfates in secondary organic aerosol,Environ. Sci. Technol.41:517–527.CrossRefGoogle Scholar
  79. Szeremeta, E., Barzaghi, P., Böge, O., Herrmann, H., Gmachowski, L., and Rudzinski, K. J., 2007, Aqueous-phase reactions of isoprene oxidation products with hydroxyl radicals, in:Proc. 2nd ACCENT Symposium, S. Fuzzi, M. Malone, eds, ACCENT Project Office, Urbino.Google Scholar
  80. Szmigielski, R., Surrat, J. D., Vermeylen, R., Szmigielska, K., Kroll, J. H., Ng, N. L., Murphy, S. M., Sorooshian, A., Seinfeld, J. H., and Claeys, M., 2007, Photooxidation of isoprene using trimethylsilyation and gas chromatography/ion trap mass spectrometry,J. Mass Spectrom.42:101– 116.CrossRefGoogle Scholar
  81. Teysèrde, H., Michou, M., Clark, H. L., Josse, B., Karcher, F., Olivié, D., Peuch, V.-H., Saint-Martin, D., Cariolle, D., Attié, J.-L., Ricaud, P., van der A, R. J., and Chéroux, F., 2007, A new chemistry — climate tropospheric and stratospheric model MOCAGE-Climat: Evaluation of the present-day climatology and sensitivity to surface processes,Atmos. Chem. Phys. Discuss.7:11295–11398.Google Scholar
  82. Tsigaridis, K. and Kanakidou, M., 2007, Secondary organic aerosol importance in the future atmosphere,Atmos. Environ.41:4682–4692.CrossRefGoogle Scholar
  83. van Donkelaar, A., Martin, R. V., Park, R. J., Heald, C. L., Fu, T.-M., Liao, H., and Guenther, A., 2007, Model evidence for a significant source of secondary organic aerosol from isoprene,Atmos. Environ.41:1267–1274.CrossRefGoogle Scholar
  84. Wang, W., Kourtchev, I., Graham, B., Cafmeyer, J., Maenhaut, W., and Claeys, M., 2005, Characterization of oxygenated derivatives of isoprene related to 2-methyltetrols in Amazonian aerosols using tri-methylsilylation and gas chromatography/ion trap mass spectrometry,Rapid Commun. Mass Spectrom.19:1343–1351.CrossRefGoogle Scholar
  85. Wenger, J., 2007, Mechanisms and SOA formation for the atmospheric degradation of xylenes, in:Volatile Organic Compounds (VOC) in the Urban Atmosphere of Europe — Sources, Transformation and Impacts, EUROCHAMP and ACCENT Workshop, Wroclaw.Google Scholar
  86. Zeng, G., Pyle, J. A., and Young, P. J., 2007, Impact of climate change on tropospheric ozone and its global budgets,Atmos. Chem. Phys. Discuss.7:11141–11189.Google Scholar
  87. Zhang, Y., Huang, J.-P., Henze, D. K., and Seinfeld, J. H., 2007, Role of isoprene in secondary organic aerosol formation on a regional scale,J. Geophys. Res.112:D20207, doi:10.1029/2007JD008675.CrossRefGoogle Scholar
  88. Zhu, L., Nenes, A., Wine, P.H., and Nicovich, J.M., 2006, Effects of aqueous organosulfur chemistry on particulate methanesulfonate to non—sea salt sulfate ratios in the marine atmosphere,J. Geophys. Res.111:D05316, doi:10.1029/2005JD006326.CrossRefGoogle Scholar
  89. Zhu, L., Nicovich, J. M., and Wine, P. H., 2003a, Temperature-dependent kinetics studies of aqueous phase reactions of hydroxyl radicals with dimethylsulfoxide, dimethylsulfone, and methanesulfonate,Aquat. Sci.65:425–435.CrossRefGoogle Scholar
  90. Zhu, L., Nicovich, J. M., and Wine, P. H., 2003b, Temperature-dependent kinetics studies of aqueous phase reactions of SO4.- radicals with dimethylsulfoxide, dimethylsulfone, and methanesulfonate,J. Photochem. Photobiol. A: Chem.157:311–319.CrossRefGoogle Scholar
  91. Zhu, L., Nicovich, J. M., and Wine, P. H., 2005, Kinetics studies of aqueous phase reactions of Cl atoms and Cl2- radicals with organic sulfur compounds of atmospheric interest,J. Phys. Chem. A 109:3903– 3911.CrossRefGoogle Scholar
  92. Ziajka, J. and Rudzinski, K. J., 2007a, Autoxidation of SIVinhibited by chlorophenols reacting with sulfate radicals,Env. Chem.4:355–363.Google Scholar
  93. Ziajka, J. and Rudzinski, K. J., 2007b, Reactions of chloro- and nitrophenols with sulphate radicals, in:Proc. 2nd ACCENT Symposium, S. Fuzzi and M. Malone, eds, ACCENT Project Office, Urbino.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • K. J. Rudzinski
    • 1
  1. 1.Institute of Physical Chemistry of the PAS, Kasprzaka 44/52WarsawPoland

Personalised recommendations