Advertisement

Analytical Innovations: Development And Applications Of Atmospheric Pressure Laser Ionization (Apli)

  • K. J. Brockmann
  • Th. Benter
  • M. Lorenz
  • A. L. Mangas SuÁrez
  • S. GÄb
  • O. Schmitz
  • R. Schiewek
  • R. MÖnnikes
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

A new method for atmospheric pressure ionization for LC and GC / mass spectrometry is reported. The atmospheric pressure laser ionization (APLI) is introduced as a powerful addition to the existing AP ionization techniques, in particular atmospheric-pressure chemical ionization (APCI), electrospray ionization (ESI) and atmospheric-pressure photoionization (APPI). APLI uses the step-wise two-photon ionization in contrast to the one-step VUV ionization process in APPI. The two-photon ionization strongly enhances the selectivity of the ionization process and the high photon flux during an ionization event drastically increases the sensitivity for non-polar compounds over that of APPI. The differences in the ionization will be discussed. The application of APLI investigations of PAH' s, hetero PHA's and halogenated polymers is presented. Furthermore, the combination of APLI with ESI and with gas chromatography opens up an extensive field of applications. In particular the GC/APLI combination provides a very selective and sensitive tool for the measurement of non-polar compounds. The introduction of REMPI labels to polar substances is used to demonstrate one possible application for this class of compounds.

Keywords

Mass spectrometry atmospheric pressure ionization REMPI atmospheric pressure laser ionization (APLI) polycyclic aromatic hydrocarbons ESI-APLI GC-APLI APLI-labels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Constapel, M., Schellentrager, M., Schmitz, O.J., Gäb, S., Brockmann, K.J., Giese, R., and Benter, Th., 2005, Atmospheric-pressure laser ionization: a novel ionization method for liquid chromatography/mass spectrometry, Rapid Commun. Mass. Spectrom., 19 (3): 326–336CrossRefGoogle Scholar
  2. Kauppila, T.J., Kostiainen, R., and Bruins, A.P., 2004a, Anisole, a new dopant for atmospheric pressure photoionization mass spectrometry of low proton affinity, low ionization energy compounds, Rapid Commun. Mass Spectrom., 18 (7): 808–815CrossRefGoogle Scholar
  3. Kauppila, T.J., Kotiaho, T., Kostiainen, R., and Bruins, A.P., 2004b, Negative ion-atmospheric pressure photoionization—mass spectrometry J. Am. Mass. Spectrom., 15 (2): 203–211CrossRefGoogle Scholar
  4. Robb, D.B., Covery, T.R., and Bruins, A.P., 2000, Atmospheric pressure photoionization for ionization of both polar and nonpolar compounds in reversed-phase LC/MS, Anal. Chemie, 72: 3653–3659CrossRefGoogle Scholar
  5. Syage, J.A., 2004, Mechanism of [M+H](+) formation in photoionization mass spectrometry, J. Am. Mass. Spectrom., 15: 1521–1533CrossRefGoogle Scholar
  6. Syage, J.A. and Evans M.D., 2001, Photoionization mass spectrometry—a powerful new tool for drug discovery, Spectroscopy, 16: 15–21Google Scholar
  7. Syage, J.A., Evans, M.D., and Hanold, K.A., 2000, Photoionization mass spectrometry, Am. Lab., 32: 24–29Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • K. J. Brockmann
    • 1
  • Th. Benter
    • 1
  • M. Lorenz
    • 1
  • A. L. Mangas SuÁrez
    • 1
  • S. GÄb
    • 2
  • O. Schmitz
    • 2
  • R. Schiewek
    • 2
  • R. MÖnnikes
    • 2
  1. 1.Division of Physical ChemistryUniversity of WuppertalWuppertalGermany
  2. 2.Division of Analytic ChemistryUniversity of WuppertalWuppertalGermany

Personalised recommendations