How Reliable Are Emission Inventories?Field Observations Versus Emission Predictions For Nmvocs

  • A. Niedojadlo*
  • R. Kurtenbach
  • P. Wiesen
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Emission inventories are a very important tool in air quality protection and management. The accuracy of current NMVOC emission estimates have been questioned in many studies. Discrepancies between calculated emissions reported in the emission inventories and real world emission measurements are observed since many years. Also the results from CMB studies performed in Wuppertal, Germany and Wroclaw, Poland showed that road traffic rather than solvent use mainly contributes to the ambient NMVOC concentrations and disagreed with emission inventories, which postulated the dominance of solvent use emission.


NMVOCs emission inventories traffic emission solvent use emission CMB modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badol, C., Locoge, N., Galloo, J. C., 2008, Using a source-receptor approach to characterise VOC behaviour in French urban area influenced by industrial emission Part II: Source contribution assessment using the Chemical Mass Balance (CMB) model, Sci. Total Environ., 389:429–440.CrossRefGoogle Scholar
  2. Brandt, A., Adelt, F., Schultz, T., Motz, G. B., 2000, Ozonrelevante VOC-Emissionen aus Kleingewerbe und Privathaushalten in Nordrhein-Westfalen, Gefahrstoffe — Reinhaltung der Luft, 60:453–457.Google Scholar
  3. Brown, S. G., Frankel, A., Hafner, H. R., 2007, Source apportionment of VOC in the Los Angeles area using positive matrix factorization, Atmos. Environ., 41:227–237.CrossRefGoogle Scholar
  4. Censullo, A. C., Jones, D. P., Wills, M. T., 2000, Improvement of speciation profiles for aerosols coatings, California Environmental Protection Agency, Final Report 98–306.Google Scholar
  5. Choi, Y. J., Ehrman, S. H., 2004, Investigation of sources of volatile organic compounds in the Baltimore area using highly time-resolved measurements, Atmos. Environ., 38:775–791.CrossRefGoogle Scholar
  6. Conner, T. L., Lonneman, W. A., Seila, R. L., 1995, Transportationrelated volatile hydrocarbons source profiles measured in Atlanta, J. Air Waste Manage. Assoc., 45:383–394.Google Scholar
  7. Corsmeier, U., Imhof, D., Koher, M., Kühlwein, J., Kurtenbach, R., Petrea, M., Rosenbohm, E., Vogel,B., Vogt, U., 2005, Comparison of measured and model-calculated real-world traffic emission,Atmos. Environ., 39:5760–5775.CrossRefGoogle Scholar
  8. Derwent, R. G., Middleton, D. R., Field, R. A., Goldstone, M. E., Lester, J. N., Perry, R., 1995, Analysis and interpretation of air quality data from an urban roadside location in central London over the period from July 1991 to July 1992, Atmos. Environ., 29:923–946.CrossRefGoogle Scholar
  9. Doskey, P. V., Porter, J. A., Scheff, P. A., 1992, Source fingerprints for volatile non-methane hydrocarbons, J. Air Waste Manage. Assoc., 42:1437–1445.Google Scholar
  10. Duffy, B. L., Nelson, P. F., Ye, Y., Weeks, I. A., 1999, Speciated hydrocarbons profiles and calculated reactivities of exhaust and evaporative emission from 82-in-use light-duty Australian vehicles, Atmos. Environ., 33:291–305.CrossRefGoogle Scholar
  11. EPA, Environmental Protection Agency, 2004, Emission Inventory Improvement Programs, Technology transfer network clearinghouse for inventories and emission factors, Technical Report Series,
  12. EEA, European Environmental Agency, 2007, Annual European Community LRTAP Convention Emission Inventory report 1990–2005, Copenhagen.Google Scholar
  13. Fall, R., 1999, Biogenic emission of volatile organic compounds from higher plants, in: Hewitt, C. N.(ed.) Reactive Hydrocarbons in the Atmosphere, Academic, San Diego, pp. 43–96.Google Scholar
  14. Friedrich, R., Wickert, B., Blank, P., Emeis, S., Engewald, W., Hassel, D., Hoffmann, H., Michael, H.,Obermeier, A., SchÄfer, K., Schmitz, T., Sedlmaier, A., Stockhause, M., Theloke, J., Weber, F. J.,2002, Development of emission models and improvement of emission data for Germany, J. Atmos.Chem., 42:179–206.CrossRefGoogle Scholar
  15. Gomes J. A. G., 2002, Impact of road traffic emissions on the ozone formation in Germany, Dissertation of the Bergische Universität, Wuppertal.Google Scholar
  16. Guenther, A., Hewitt, N. C., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L.,Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J.,Zimmerman, P. A., 1995, Global model of natural volatile organic compound emissions,J. Geophys.Res., 100:8873–8892.CrossRefGoogle Scholar
  17. Guo, H., So, K. L., Simpson, I. J., Barletta, B., Meinardi, S., Blake, D. R., 2007, C1–C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment, Atmos. Environ., 41:1456–1472.CrossRefGoogle Scholar
  18. Hassel, D., Jost, P., Weber, F. J., Dursbeck, K., Sonnborn, S., Plettau, D., 1994, Abgasemissionsfaktoren von Pkw in der Bundesrepublik Deutschland, Umweltbundesamt, Erlich Schmidt Verlag, Berlin.Google Scholar
  19. Heeb, N. V., Forss, A. M., Weilenmann, M., 2002, Pre- and post-catalyst-, fuel-, velocity- and acceleration-dependent benzene emission data of gasoline-driven EURO-2 passenger cars and light duty vehicles, Atmos. Environ., 36:4745–4756.CrossRefGoogle Scholar
  20. Hellén, H., Hakola, H., Laurila, T., 2003, Determination of source contributions of NMHCs in Helsinki (60°N, 25°E) using chemical mass balance and the Unmix multivariate receptor models, Atmos.Environ., 37:1413–1424.CrossRefGoogle Scholar
  21. Ho, K.F., Lee, S. C., Chiu, G. M. Y., 2002, Characterization of selected volatile organic compounds,polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station, Atmos.Environ., 36:57–65.CrossRefGoogle Scholar
  22. Jenkin, M. E., Passant, N. R., Rudd, H. J., 2000, Development of species profiles for UK emissions of VOCs, AEA Technology plc, AEAT/EPSC-0044.Google Scholar
  23. Jorguera, H., Rappenglück, B., 2004, Receptor modeling of ambient VOC at Santiago, Chile, Atmos.Environ., 38:4243–4263.CrossRefGoogle Scholar
  24. Kean, A. J., Grosjean, E., Grosjean, D., Harley, R., 2001, On-road measurement of carbonyls in California light-duty vehicle emissions, Environ. Sci. Technol.,35:4198–4204.CrossRefGoogle Scholar
  25. Klemp, D., Mannschreck, K., Pätz, H. W., Habram, M., Matuska, P., Slemr, F., 2002, Determination of anthropogenic emission ratio in the Augsburg area from concentration ratios: Results from long-term measurements, Atmos. Environ., 36:S61–S80.CrossRefGoogle Scholar
  26. Klimont, Z., Amann, M., Cofala, J., 2000, Estimating costs for controlling emissions of volatile organic compounds (VOC) from stationary sources in Europe, International Institute for Applied Systems Analysis, Interim Report IR-00-51.Google Scholar
  27. Kristensson, A., Johansson, Ch., Westerholm, R., Swietlicki, E., Gidhagen, L., Wideqvist, U., Vesely, V.,2004, Real-word traffic emission factors of gases and particles measured in road tunnel in Stockholm, Sweden, Atmos. Environ., 38:657–673.CrossRefGoogle Scholar
  28. Kurtenbach, R., Ackerman, R., Becker, K. H., Geyer, A., Gomes, J. A. G., Lörzer, J. C., Platt, U.,Wiesen, P., 2002, Verification of the contribution of vehicular traffic to the total NMVOC emissions in Germany and the importance of the NO3 chemistry in the city air,J. Atmos. Chem., 42:395–411.CrossRefGoogle Scholar
  29. Kühlwein, J., Friedrich, R., 2000, Uncertainties of modelling emissions from road transport, Atmos.Environ., 34:4603–4610.CrossRefGoogle Scholar
  30. Kühlwein, J., Friedrich, R., 2005, Traffic measurements and high-performance modeling of motorway emission rates, Atmos. Environ., 39:5722–5736.CrossRefGoogle Scholar
  31. Kühlwein, J., Wickert, B., Trukenmüller, A., Theloke, J., Friedrich, R., 2002, Emission modelling in high spatial and temporal resolution and calculation of pollutant concentrations for comparison with measured data, Atmos. Environ., 36:S7–S18.CrossRefGoogle Scholar
  32. Lai, C. H., Chen, K. S., Ho, Y. T., Peng, Y. P., Chou, Y. M., 2005, Receptor modeling of source contribution to atmospheric hydrocarbons in urban Kaohsiung, Taiwan, Atmos. Environ., 39:4543–4559.CrossRefGoogle Scholar
  33. Latella, A., Stani, G., Cobelli, L., Duane, M., Junninen, H., Astorga, C., Larsen, B. R., 2005,Semicontinuous GC analysis and receptor modeling for source apportionment of ozone precursor hydrocarbons in Bresso, Milan, 2003, J. Chrom. A, 1071:29–39.CrossRefGoogle Scholar
  34. Lewyckyj, N., Colles, A., Janssen, L., Mensink, C., 2004, MIMOSA: A road emission model using average speeds from a multi-modal traffic flow model, in: Friedrich, R., Reis, S. (eds.) Emission of Air Pollutants: Measurements, Calculations and Uncertainties, Springer, Berlin, pp. 299–304.Google Scholar
  35. Lonneman, W.A., Sella, R.L., Meeks, S.A., 1986, Non-methane organic composition in the Lincoln Tunnel, Environ. Sci. Technol., 20:790–796.CrossRefGoogle Scholar
  36. Mannschreck, K., Klemp, D., Kley, D., Friedrich, R., Kühlwein, J., Wickert, B., Matuska, P., Habram,M., Slemr, F., 2002, Evaluation of emission inventory by ground-based measurements: Comparison of calculated and experimentally derived concentration ratios of NMHC, CO and NOx, Atmos.Environ., 36:S81–S94.CrossRefGoogle Scholar
  37. McGaughey, G. R., Desai, N. R., Allen, D. T., Seila, R. L., Lonneman, W. A., Fraser, M. P., Harley, R.A., Pollack, A. K., Ivy, J. M., Price, J. H., 2004, Analysis of motor vehicle emissions in a Huston Tunnel during the Texas Air Quality Study 2000, Atmos. Environ., 38:3363–3372.CrossRefGoogle Scholar
  38. McInnes, G. (ed.), 1996, Joint EMEP/CORINAIR Atmospheric Emission Inventory Guidebook,European Environmental Agency, Copenhagen.Google Scholar
  39. Mensink, C., De Vlieger, I., Nys, J., 2000, An urban transport emission model for Antwerp area, Atmos.Environ., 34:4595–4602.CrossRefGoogle Scholar
  40. Middelton, P., 1995, Sources of air pollutants, in: Singh H. B. (ed.) Composition, Chemistry and Climate of the Atmosphere, Van Nostrand Reinhold, New York, pp. 88–119.Google Scholar
  41. Mittermeier, B., Schmitz, T., Hassel, D., Weber, F. J., Klemp, D., 2004, VOC-split of gasoline and diesel passenger cars, in: Friedrich, R., Reis, S. (eds.) Emission of Air Pollutants: Measurements,Calculations and Uncertainties, Springer, Berlin, pp. 25–32.Google Scholar
  42. Möllmann-Coers, M., Klemp, D., Mannschreck, K., Slemr, F., 2002, Statistical study of the diurnal variation of modeled and measured NMHC contributions, Atmos. Environ., 36:S109–S122.CrossRefGoogle Scholar
  43. Na, K., Kim, Y. P., 2007, Chemical mass balance receptor model applied to ambient C2–C9 VOC concentration in Seul, Korea: Effect of chemical reaction losses, Atmos. Environ., 41:6715–6728.CrossRefGoogle Scholar
  44. Niedojadlo, A., Becker, K. H., Elshorbany, Y., Kurtenbach, R., Wiesen, P., Schady, A., Zwozdziak, A.,Zwozdziak, J., 2007a, Non-methane volatile organic compound measurements in the city center of Wroclaw, Poland, in: Mellouki, A., Ravishankara, A. R. (eds.) Regional Climate Variability and Its Impact in the Mediterranean Area, Springer, Dordrecht, The Netherlands, pp. 181–196.CrossRefGoogle Scholar
  45. Niedojadlo, A., Becker, K. H., Kurtenbach, R., Wiesen, P., 2007b, The contribution of traffic and solvent use to the total NMVOC emission in a German city derived from measurements and CMB modeling,Atmos. Environ., 41:7108–7126.CrossRefGoogle Scholar
  46. Ntziachristos, L., Samaras, Z., 2000, COPERT III: Computer program to calculate emission from road transport — Methodology and emission factors (version 2.1), U.S. Environmental Protection Agency,Technical Report N° Cincinnati.Google Scholar
  47. Parrish, D., 2006, Critical evaluation of US on-road vehicle emission inventories, Atmos. Environ.,40:2288–2300.CrossRefGoogle Scholar
  48. Passant, N. R., 2002, Speciation of UK emissions of non-methane volatile organic compounds, AEA Technology plc, AEAT/ENV/R/0545.Google Scholar
  49. Petrea, M., 2007, Emissions of non-methane volatile organic compounds (NMVOC) from vehicular traffic in Europe, Dissertation of the Bergische Universität, Wuppertal.Google Scholar
  50. Piccot, S. D., Watson, J. J., Jones, J. W., 1992, A global inventory of volatile organic compounds emissions from anthropogenic sources, J. Geophys. Res., 97:9897–9912.Google Scholar
  51. Pierson, W.R., Gertler, A.W., Robinson, N.F., Sagebiel, J.C., Zielinska, B., Bishop, G.A., Stedman,D.H., Zweidinger, R.B., Ray, W.D., 1996, Real-world automotive emissions — Summary of studies in the Fort McHenry and Tuscarora Mountain Tunnels, Atmos. Environ., 30:2233–2256.CrossRefGoogle Scholar
  52. Placet, M., Mann, C. O., Gilbert, R. O., Niefer, M. J., 2000, Emissions of ozone precursors from stationary sources: A critical review, Atmos. Environ., 34:2183–2204.CrossRefGoogle Scholar
  53. Rogak, S. N., Pott, U., Dann, T., Wang, D., 1998, Gaseous emissions from vehicles in a traffic tunnel in Vancouver, British Columbia, J. Air Waste Manage. Assoc., 48:604–615.Google Scholar
  54. Schmid, H., Pucher, E., Ellinger, R., Biebl, P., Puxbaum, H., 2001, Decadal reductions of traffic emissions on a transit route in Austria — Results of the Tauern Tunnel experiment 1997, Atmos.Environ., 35:3585–3593.CrossRefGoogle Scholar
  55. Schmitz, Th., Hassel, D., Weber, F. J., 2000, Determination of VOC-components in the exhaust of gasoline and diesel passenger cars, Atmos. Environ., 34:4639–4647.CrossRefGoogle Scholar
  56. Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., Hewitt, C. N.,Janson, R., Khalil, M. A. K., Owen, S., Pierce, T. E., Puxbaum, H., Shearer, M., Skiba, U.,Steinbrecher, R., Tarasson, L., Öquist, M. G., 1999, Inventoring emissions from nature in Europe,J. Geophys. Res., 104(D7):8113–8152.CrossRefGoogle Scholar
  57. Slemr, F., Baumbach, G., Blank, P., Corsmeier, U., Feidler, F., Friedrich, R., Habram, M., Kalthoff, N.,Klemp, D., Kühlwein, J., Mannschreck, K., Möllmann-Coers, M., Nester, K., Panitz, H. J., Rabl, P.,Slemr, J., Vogt, U., Wickert, B., 2002, Evaluation of spatially and temporarily highly resolved emission inventories of photo smog precursors for the city of Augsburg: The experiment EVA and its major results, J. Atmos. Chem., 42:207–233.CrossRefGoogle Scholar
  58. Staehelin, J., Keller, C., Stahel, W., SchlÄpfer, K., Wunderli, S., 1998, Emission factors from road traffic from a tunnel study (Gubrist Tunnel, Switzerland). Part III: Results of organic compounds, SO2 and speciation of organic exhaust emission, Atmos. Environ., 32:999–1009.CrossRefGoogle Scholar
  59. Steinbrecher, R., Smiatek, G., 2004, VOC emissions from biogenic sources, in: Friedrich, R., Reis, S.(eds.) Emission of Air Pollutants: Measurements, Calculations and Uncertainties, Springer, Berlin,pp. 16–24.Google Scholar
  60. Stemmler, K., Bugmann, S., Buchmann, B., Reimann, S., Staehelin, J., 2005, Large decrease of VOC emissions of Switzerland's car fleet during the past decade: Results from a highway tunnel study,Atmos. Environ., 39:1009–1018.CrossRefGoogle Scholar
  61. Sturm, P., Rodler, J., Lechhner, B., Almbauer, A., 2001, Validation of emission factors from road vehicles based on street tunnel measurements, Int. J. Veh. Des., 27:65–75.CrossRefGoogle Scholar
  62. Theloke, J., 2005, NMVOC Emissionen aus der Lösemittelanwendung und Möglichkeiten zu Ihrer Minderung. Fortschrittsberichte VDI Reihe 15 Nr 252. VDI, Düsseldorf.Google Scholar
  63. Theloke, J., Obermaier, A., Friedrich, R., 2001, Abschätzung der Emissionen von Lösemitteln in Deutschland, Gefahrstoffe — Reinhaltung der Luft, 61:105–112.Google Scholar
  64. Thijsse, Th. R., van Oss, R. F., Lenschow, P., 1999, Determination of source contribution to ambient volatile organic compound concentration in Berlin, J. Air Waste Manage. Assoc., 49:1394–1404.Google Scholar
  65. UBA, 2008, Umweltdaten Deutschland Online, Umweltbundesamt,
  66. Ullmann's Encyclopedia of Industrial Chemistry, 2001, Sixth Edition, Electronic Release.Google Scholar
  67. Vega, E., Mugica, V., Carmona, R., Valencia, E., 2000, Hydrocarbon source apportionment in Mexico City using the chemical mass balance receptor model, Atmos. Environ., 34:4121–4129.CrossRefGoogle Scholar
  68. Vivianco, M. G., Andrade, M., 2006, Validation of the emission inventory in the Sao Paulo Metropolitan Area of Brazil, based on ambient concentrations ratios of CO, NMOG and NOx and on the photochemical model, Atmos. Environ., 40:1189–1198.CrossRefGoogle Scholar
  69. Watson, J. G., Robinson, N. F., Fujita, E. M., Chow, J. C., Pace, T. G., Lewis, Ch., Coulter, Th., 1998, CMB8 applications and validation protocol for PM2.5 and VOCs, Desert Research Institute Document No. 1808.2D1, US EPA. Watson, J. G., Chow, J. C., Fujita, E. M., 2001, Review of volatile organic compound source apportionment by chemical mass balance, Atmos. Environ., 35:1567–1584.CrossRefGoogle Scholar
  70. Wickert, B., Pregger, T., Theloke, J., Friedrich, R., 1999, Emissionen GesundheitsschÄdlicher Stoffe bei Produktionsprozessen, im Verkehr und im privaten Bereich, Arbeitsgruppe Luftreinhaltung der Universitt Stuttgard ALS, 25–35.Google Scholar
  71. Wöhrnschimmel, H., Márquez, C., Mugica, V., Stahel, W. A., Staehelin, J., Cárdenas, B., Blanco, S.,2006, Vertical profiles and receptor modeling of volatile organic compounds over Southeastern Mexico City, Atmos. Environ., 40:5125–5136.CrossRefGoogle Scholar
  72. Zárate, E., Belalcázar, L. C., Clappier, A., Manzi, V., Van den Bergh, H., 2007, Air quality modelling over Bogota, Columbia: Combined techniques to estimate and evaluate emission inventories, Atmos.Environ., 41:6302–6318.CrossRefGoogle Scholar
  73. Zervas, E., Montagne, X., Lahaye, J., 2001, Emission of specific pollutants from a compression ignition engine. Influence of fuel hydrotreatment and fuel/air equivalence ratio. Atmos. Environ., 35:1301–1306.CrossRefGoogle Scholar
  74. Zielinska, B., Sagabiel, J. C., Harshfield, G., Gertler, A. W., Pierson, W. R., 1996, Volatile organic compounds up to C20 emitted from motor vehicles: Measurement methods,Atmos. Environ.,30:2269–2286.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • A. Niedojadlo*
    • 1
  • R. Kurtenbach
    • 1
  • P. Wiesen
    • 1
  1. 1.Laboratory of Physical Chemistry, Department of ChemistryUniversity of Wuppertal GauβstrWuppertalGermany

Personalised recommendations