Skip to main content

The Role Of The Cytoskeleton In Plant Cell Gravisensitivity

  • Conference paper
The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology

This Chapter Highlights Current Ideas On The Role Of The Cyto-Skeleton In Plant Cell Gravisensing. It Is Important To Distinguish Between Cell Graviperception And Cell Gravisensing. The First Implies The Active Per Ception Of A Gravitational Stimulus By Cells Which Are Specialized For Gravity Perception, And The Second Refers To Cell Structure And Stability In The Gravitational Field And Their Changes In Response To Microgravity. Special Attention Is Given To The Rearrangements Of Actin Microfilaments And Tubulin Microtubules In Multicellular Organs As Well As In The Tip-Growing Plant Cells Experiencing Microgravity, Under Clinorotation And Gravistimulation. It Is Assumed That The Cytoskeleton Takes Part Both In Plant Cell Graviperception And Gravisensing And Helps To Provide Growth Stability For Plants. The Perspectives Of Cytoskeleton Research Are Outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. W. Halstead and F. R. Dutcher, Plants in space. Ann. Rev. Plant Physiol. l38, 317– 345 (1987).

    Google Scholar 

  2. D. E. Claasen and B. S. Spooner, The impact of alterations in gravity on aspects of cell biology, Int. Rev. Cytol. 156, 301–373 (1994).

    Article  Google Scholar 

  3. E. L. Kordyum, Plant cells in microgravity and under clinostating, Int. Rev. Cytol. 171, 1–78 (1997).

    Article  PubMed  CAS  Google Scholar 

  4. J. Z. Kiss, Mechanisms of the early phases of plant gravitropism. Plant Sci. 19, 551– 573 (2000).

    CAS  Google Scholar 

  5. E. L. Kordyum and J. A. Guikema, An active role of the amyloplasts and nuclei of root statocytes in graviperception, Adv. Space Res. 27, 951–956 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. A. Sievers, D. Volkmann, and Z. Heinovicz, Role of the cytoskeleton in gravity per ception, In: The Cytoskeletal Basis in Plant Growth and Form. Edited by C.W. Lloyd (Academic, London, 1991) pp. 169–182.

    Google Scholar 

  7. O. T. Demkiv, E. L. Kordyum, and Ya. D. Khorkavtsiv, Gravi- and photostimuli in moss protonema growth movement, Adv. Space Res. 21, 1191–1195 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. L. Walker and F. D. Sack, Amyloplasts as possible statoliths in gravitropic protonemata of the moss Ceratodon purpureus, Planta 181, 71–77 (1990).

    CAS  Google Scholar 

  9. D. Volkmann, B. Buchen, Z. Heinovicz, M. Tewinkel, and A. Sievers, Oriented move ment of statoliths studied in a reduced gravitational field during parabolic flights of rockets, Planta 185, 153–161 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. G. Perbal, D. Driss-Ecole, M. Tewinkel, and D. Volkmann, Statocyte polarity and gravisensitivity in seedling roots grown in microgravity, Planta 203, 57–62 (1997).

    Article  Google Scholar 

  11. F. Baluška and K. Hasenstein, Root cytoskeleton: its role in perception of and response to gravity, Planta 203, 69–78 (1997).

    Article  Google Scholar 

  12. D. Volkmann, F. Baluška, I. Lichtshieldl, D. Driss-Ecole, and G. Perbal, Statolith motion in gravity-perceiving plant cells: does actomyosin counteract gravity? FASEB J. 13, S143–S147 (1999).

    PubMed  CAS  Google Scholar 

  13. G. Lorenzi and G. Perbal, Actin filament responsible for the location of the nucleus in the lentil statocyte are sensitive to gravity, Biol. Cell 68, 259–263 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. D. Driss-Ecole, J. Vassy, J. Rembur, A. Guivarch, M. Prouteau, W. Dewitte, and G. Perbal, Immunolocalization of actin in root statocytes of .Lens culinaris L., J. Exp. Bot. 51, 521–529 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. M. Braun, Gravity perception requires statoliths settled on specific plasma membrane areas in characean zhizoids and protonemata, Protoplasma 219, 150–159 (2002).

    Article  PubMed  Google Scholar 

  16. E. Blancaflor and K. Hasenstein, The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize, Plant Physiol. 113, 1447–1455 (1997).

    PubMed  CAS  Google Scholar 

  17. H. Friedman, J. Vos, P. Hepler, S. Meir, A. Halevy, and S. Philosoph-Hadas, The role of actin filaments in the gravitropic response of snapdragon flowering shoots, Planta 216, 1034–1042 (2003).

    PubMed  CAS  Google Scholar 

  18. G. Monshausen and A. Sievers, Basipetal propagation of gravity-induced surface pH changes along primary roots of Lepidium sativum L., Planta 215, 980–988 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. K. Yamamoto and J. Kiss, Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis, Plant Physiol. 128, 669–681 (2002).

    CAS  Google Scholar 

  20. P. Nick, R. Godbole, and Q. Wang, Probing rice gravitropism with cytoskeletal drugs and cytoskeletal mutants, Biol. Bull. 192, 141–143 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. E. Hou, D. R. Mohamalawari, and E. B. Blancaflor, Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton, Plant Physiol. 131, 1360–1373 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. T. Yoder, H.-Q. Zheung, P. Todd, and L. Staehelin, Amyloplast sedimentation dymanics in maize columella cells support a new model for the gravity-sensing apparatus of roots, Plant Physiol. 125, 1045–1060 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. T. Kraft, J. Jack, A. Van Loon, and J. Kiss, Plastid position in Arabidopsis columella cells is similar in microgravity and on random-positioning machine, Planta 211, 415– 422 (2003).

    Article  Google Scholar 

  24. A. Sievers and L. Heyder-Caspers, The effect of centrifugal accelerations on the polarity of statocytes and on the graviperception of cress roots, Planta 157, 64–70 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. K. J. Fitzelle and J. Z. Kiss, Restoration of gravitropic sensitivity in starch-deficient mutants of Arabidopsis by hypergravity, J. Exp. Bot. 52, 265–275 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. M. Braun and A. Sievers, Role of the microtubule cytoskeleton in gravisensing Chara rhizoids, Eur. J. Cell Biol. 63, 289–298 (1994).

    CAS  Google Scholar 

  27. F. Baluška, A. Kreibaum, S. Vitha, J. Parker, P. Barlow, and A. Sievers, Cental root cap cells are depleted of endoplasmic microtubules and actin microfilament bundles, Protoplasma 196, 212–223 (1997).

    Article  PubMed  Google Scholar 

  28. F. Baluška, M. Hauskrecht, P. Barlow, and A. Sievers, Gravitropism of the primary root of maize: a complex pattern of differential cellular growth in the cortex independent of the microtubular cytoskeleton, Planta 198, 310–318 (1996).

    Article  PubMed  Google Scholar 

  29. E. Blancaflor and K. Hasenstein, Organization of cortical microtubules in graviresponding maize roots, Planta 101: 231–237 (1993).

    Google Scholar 

  30. K. Zandomeni and P. Schopfer, Mechanosensory microtubule reorientation in the epi dermis of maize coleptiles subjected to bending stress, Protoplasma 182, 96–101 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. E. Blancaflor and K. Hasenstein, Time course of auxin sensitivity of cortical microtubule reorientation in maize roots, Protoplasma 185, 72–82 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. P. Nick, E. Schafer, R. Hertel, and M. Furuya, On the putative role of microtubules in gravitropism of maize coleoptiles, Plant Cell Physiol. 32, 873–880 (1991).

    CAS  Google Scholar 

  33. R. Himmelspach and P. Nick, Gravitropic microtubule reorientation can be uncoupled from growth, Planta 212, 184–189 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. K. Fisher and P. Shcopfer, Physical strain-mediated microtubule reorientation in the epidermis of gravitropically or phototropically stimulated maize coleoptiles, Plant J. 15, 119–123 (1997).

    Article  Google Scholar 

  35. K. Takesue and H. Shibaoka, Auxin-uinduced longitudinal—transverse reorientation of cortical microtubules in non elongating epidermal cells of azuki bean epicotyls, Protoplasma 206, 27–30 (1999).

    Article  CAS  Google Scholar 

  36. E. Hartmann, Influence of light on phototropic bending of moss protonemata of Ceratodon purpureus Brid., J. Hattori Bot. Lab. 55, 87–98 (1984).

    CAS  Google Scholar 

  37. F. D. Sack, Plastids and gravitropic sensing. Planta (Suppl.) 203, 63–68 (1997).

    Article  Google Scholar 

  38. C. I. Chaban, V. D. Kern, R. T. Ripetskyj, O. T. Demkiv, and F. D. Sack, Gravitropism in caulonemata of the moss Pottia intermedia, J. Bryology 20, 287–299 (1998).

    CAS  Google Scholar 

  39. O. T. Demkiv, E. L. Kordyum, O. R. Kardash, and O. Y. Khorkavtsiv, Gravitropism and phototropism in protonemata of the moss Pohlia nutans (Hedw.) Lindb, Adv. Space Res. 23(12), 1999–2004 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. J. M. Schwuchow, D. Kim, and F. D. Sack, Caulonemal gravitropism and amyloplast sedimentation in the moss Funaria, Can. J. Bot. 73, 1029–1035 (1995).

    PubMed  CAS  Google Scholar 

  41. V. J. D. Smith, J. M. Schwuchow, and F. Sack, Amyloplasts that sediment in pro-tonemata of the moss Ceratodon purpureus are nonrandomly distributed in microgravity, Plant Physiol. 15, 2085–2094 (2001).

    Article  Google Scholar 

  42. J. M. Schwuchow and F. D. Sack, Microtubules restrict plastid sedimentation in protonemata of the moss Ceratodon, Cell Motil. Cytoskel. 29, 366–374 (1994).

    Article  CAS  Google Scholar 

  43. J. M. Schwuchow, F. D. Sack, and E. Hartmann, Microtubule distribution in gravitropic protonemata of the moss Ceratodon, Protoplasma 159, 60–69 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. V. Meske and E. Hartmann, Reorganization of microfilaments in protonemal tip cells of the moss Ceratodon during the phototropic response, Protoplasma 188, 59–69 (1995).

    Article  PubMed  CAS  Google Scholar 

  45. B. L. Goode, D. G. Drubin, and G. Barnes, Functional cooperation between the micro-tubule and actin cytoskeletons, Curr. Opin. Cell Biol. 12, 63–71 (2000).

    Article  PubMed  CAS  Google Scholar 

  46. G. Gai, S. Romagnoli, A. Moscatelli, and M. Cresti, Evidence for microtubule-based organelle transport in the pollen tube, in: Cell Biology of Plant and Fungal Tip Growth. Edited by A. Geitmann, M. Cresti, I.B. Heath (IOS Press, Amsterdam, 2001), pp. 1–12.

    Google Scholar 

  47. R. T. Ripetskyj, N. A. Kit, and C. I. Chaban, Influence of gravity on the photomorphism of secondary moss protonemata. Adv. Space Res. 23, 2005–2010 (1999).

    Article  PubMed  CAS  Google Scholar 

  48. M. Bopp and D. Gerhäuser, Localization of cytokinin responses in the moss Funaria hygrometrica, Biologia Plantarum (Praha) 27, 265–269 (1985).

    Article  CAS  Google Scholar 

  49. O. T. Demkiv, O. Y. Khorkavtsiv, and O. I. Pundiak, Changes of protonemal cell growth related to cytoskeleton organization. Cell Biol. Int. 27, 187–189 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. G. Nace, Gravity and position homeostasis of the cell, Adv. Space Res. 9, 159–168 (1983).

    Article  Google Scholar 

  51. P. W. Barlow, A conceptual framework for investigating plant growth movements, with special reference to root gravitropism, utilizing a microgravity environment, Micrograv. Quart. 2, 77–87 (1992).

    CAS  Google Scholar 

  52. R. Wayne, M. P. Staves, and A. C. Leopold, Gravity-dependent polarity of cytoplasmic streaming in Nitellopsis, Protoplasma 155, 43–57 (1990).

    Article  CAS  Google Scholar 

  53. D. E. Ingber, Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton, J. Cell Sci. 104, 613–627 (1993).

    PubMed  Google Scholar 

  54. L. F. Cipriano, An overlooked gravity sensing mechanism, Physiologist 34, 2–75. (1993).

    Google Scholar 

  55. C. Wolverton, H. Ishikawa, and M. Evans, The kinetics of root gravitropism: dual motors and sensors, J. Plant Growth Regul. 21, 102–112 (2002).

    Article  PubMed  CAS  Google Scholar 

  56. G. V. Shevchenko and E. L. Kordyum, Orientation of root hair growth is influenced by simulated microgravity. Ann. Int. Gravit. Physiol. Meeting. 22–27 April, Budapest. Abstracts: 46 (2001).

    Google Scholar 

  57. H. Schnabl, C. Hunte, M. Schulz, D. Wolf, C. Ghiena-Rahlenbeck, M. Bramer, M. Graab, M. Janssen, and H. Kalwett, Effects of fast clinostat treatment and microgravity on Vicia faba L. mesophyll cell protoplast ubiquitin pools and actin isoforms. Microgravity Sci. Technol. 9, 275–280 (1996).

    PubMed  CAS  Google Scholar 

  58. C. Papaseit, N. Pochon, and J. Tabony, Microtubule self-organization is gravity-dependent, Proc. Natl. Acad. Sci. U.S.A. 97, 8364–8368 (2000).

    Article  PubMed  CAS  Google Scholar 

  59. D. E. Fosket, Plant Growth and Development (Academic, San Diego, CA, 1992).

    Google Scholar 

  60. P. J. Moos, K. Graff, and M. Edwards, Gravity-induced changes in microtubule formation, ASGSB Bull. 2, 48 (1989).

    Google Scholar 

  61. G. V. Shevchenko, Cytoskeletal components of Beta vulgaris root hairs in altered gravity fields, Adv. in Space. Res. 21, 1167–1170 (1999).

    Article  Google Scholar 

  62. Ia. Kalinina and E. Kordyum, Clinorotation affects the microtubule organization in root epidermis and cortex cells in Brassica rapa seedlings, J. Gravit. Physiol. 13, 109–110 (2006).

    Google Scholar 

  63. G. V. Shevchenko, Ya. Kalinina, and E. L Kordyum, Interrelation between microtubules and microfilaments in the elongation zone of Arabidopsis root under clinorotation, Adv. Space Res. 39, 1171–1175 (2007).

    Article  Google Scholar 

  64. J. Marc, Ch. Granger, J. Brincat, D. D. Fiusher, Th. Kao, A. G. McCubbin, and R. J. Cyr, A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells, Plant Cell 10, 1927–1939 (1998).

    Article  PubMed  CAS  Google Scholar 

  65. K. Mizuno, Induction of cold stability of microtubules in cultured tobacco cells, Plant Physiol. 100, 740–748 (1992).

    Article  PubMed  CAS  Google Scholar 

  66. F. Baluška, P. W. Barlow, and S. Kubica, Importance of the postmitotic growth (PIG) region for growth and development of roots, Plant Soil 167, 31–42 (1994).

    Article  Google Scholar 

  67. F. Baluška, D. Volkmann, and P. W. Barlow, A polarity crossroad in the transition growth zone of maize root apices: cytoskeletal and developmental implications, J. Plant Growth Regul. 20, 170–181 (2001).

    Article  Google Scholar 

  68. H. Ishikawa and M. Evans, The role of the distal elongation zone in the response of maize roots to auxin and gravity, Plant Physiol. 102, 1203–1210 (1993).

    PubMed  CAS  Google Scholar 

  69. H. Ishikawa and M. L. Evans, Specialized zone of development of roots, Plant Physiol. 109, 725–727 (1995).

    PubMed  CAS  Google Scholar 

  70. T. H. Giddings and L. A. Staehelin, Microtubule-mediated control of microfibril deposi tion: a re-examination of the hypothesis, in: The Cytoskeletal Basis of Plant Growth and Form. Edited by C.W. Lloyd (Academic, San Diego, CA, 1991), pp. 85–99.

    Google Scholar 

  71. R. Dixit and R. Cyr, The cortical microtubule array: from dynamics to organization, Plant Cell 16, 2546–2552 (2004).

    Article  PubMed  CAS  Google Scholar 

  72. J. C. Sedbrook, MAPs in plant cells: delineating microtubule growth dynamics and organization, Curr. Opin. Plant Biol. 7, 632–640 (2004).

    Article  PubMed  CAS  Google Scholar 

  73. Z. H. Bin-Bing and M. W. Kirschner, Quantitative measurement of the catastrophe rate of dynamic microtubules, Cell Motil Cytoskeleton 43, 43–51 (1999).

    Article  Google Scholar 

  74. A. T. Whittington, O. Vugrek, K. J. Wei, N. G. Hasenbein, K. Sugimoto, M. C. Rashbrooke, G. O. Wasteneys, MOR1 is essential for organizing cortical microtubules in plants, Nature 411, 610–613 (2001).

    Article  PubMed  CAS  Google Scholar 

  75. P. J. Hussey, D. P. Snustad, and C. D. Silflow, Tubulin gene expression in higher plants, in: The Cytoskeletal Basis of Plant Growth and Form. Edited by C.W. Lloyd (Academic, San Diego, CA, 1991), pp. 15–27.

    Google Scholar 

  76. D. Twell, S. K Park, T. J. Hawkins, D. Schubert, R. Schmidt, A. Smertenko, and P. J. Hussey, MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast, Nat. Cell Biol. 4, 711–714 (2002).

    Article  PubMed  CAS  Google Scholar 

  77. S. L. Shaw, R. Kamyar, and D. W. Ehrhardt, Sustained microtubule treadmilling in the A. thaliana cortical array, Science 300, 1715–1718 (2003).

    Article  PubMed  CAS  Google Scholar 

  78. K. Olson, J. McIntosh, and J. Olmsted, Analysis of MAP4 function in living cells using green fluorescent protein (GFP) chimeras, J. Cell Biol. 130, 639–650 (1995).

    Article  PubMed  CAS  Google Scholar 

  79. B. Schwab, J. Mathur, R. Saedler, H. Schwarz, B. Frey, C. Scheidegger, and M. Hulskamp, Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules, Mol. Gen. Genom. 269, 350–360 (2003).

    Article  CAS  Google Scholar 

  80. K. Hasenstein, E. Blancaflor, and J. Lee, The microtubule cytoskeleton does not integrate auxin transport and gravitropism in maize roots, Physiol Plant. 105, 729–738 (1999).

    Article  PubMed  CAS  Google Scholar 

  81. G. V. Shevchenko and E. L. Kordyum, Organization of cytoskeleton during dif ferentiation of gravisensitive root sites under clinorotation, Adv. Space Res. 35, 289–295 (2005).

    Article  PubMed  CAS  Google Scholar 

  82. L. Ye. Kozeko G. V. Shevchenko, O. A. Artemenko, G. G. Martyn, and E. L. Kordyum, Actin organization and gene expression in Beta vulgaris seedlings under clinorotation, J. Gravit. Physiol. 12, 187–188 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Kordyum, E.L., Shevchenko, G.V., Kalinina, I.M., Demkiv, O.T., Khorkavtsiv, Y.D. (2008). The Role Of The Cytoskeleton In Plant Cell Gravisensitivity. In: Blume, Y.B., Baird, W.V., Yemets, A.I., Breviario, D. (eds) The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8843-8_9

Download citation

Publish with us

Policies and ethics