Skip to main content

Plant Tubulin Phosphorylation And Its Role In Cell Cycle Progression

  • Conference paper
The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology

Review of the literature reveals that plant tubulins can undergo extensive phosphorylation by different types of protein kinases, and that phosphorylation on serine/threonine residues as well as at tyrosine residues can result in the generation of a high level of polymorphism of plant tubulin. Biochemical evidence is presented to demonstrate that phosphorylation of plant tubulin is controlled by different types of protein kinases. Because the phosphorylation sites can be located along the whole length of both the alpha and beta tubulins, it is possible that this type of post-translational modification in plants can participate in modulating the tubulin-tubulin interaction, interactions of tubulins with other proteins (including MAPs and proteins of other cytoskeletal structures), with the plasma membrane and in regulating the functional stability/instability of microtubular arrays. The possible effects of different types of tubulin phosphorylation on cell cycle progression in higher plants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Hyams and C. W. Lloyd, Microtubules (Alan R Liss, New York, 1994).

    Google Scholar 

  2. R. H. Goddard, S. M. Wick, C. D. Silflow, and D. P. Snustad, Microtubule components of plant cell cytoskeleton, Plant Physiol. 104, 1–6 (1994).

    PubMed  CAS  Google Scholar 

  3. V. Baird, Y. B. Blume, and S. M. Wick, in: Plant Microtubules - Potential Targets for Biotechnological Applications, edited by P. Nick (Springer, Frankfurt/Berlin, 2000), pp. 155–187.

    Google Scholar 

  4. D. E. Fosket and L. C. Morejohn, Structural and functional organization of tubulin, Ann. Rev. Plant Physiol. Plant Mol. Biol. 43, 201–240 (1992).

    CAS  Google Scholar 

  5. P. J. Hussey, D. P. Snustad, and C. D. Silflow, in: The Cytoskeletal Basis of Plant Growth and Form, edited by C.W. Lloyd (Academic, London, 1991), pp. 15–27.

    Google Scholar 

  6. D. Breviario, Tubulin genes and promoters, in: Plant Microtubules - Potential Targets for Biotechnological Applications, edited by P. Nick (Springer, Frankfurt/Berlin, 2000), pp. 137–157.

    Google Scholar 

  7. S. D. Kopczak, N. A. Haas, P. J. Hussey, C. D. Silflow, and D. P. Snustad, The small genome of Arabidopsis contains at least six expressed α-tubulin genes, Plant Cell 4, 539–547 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. R. B. Meagher and M. Fechheimer, in: The Arabidopsis Book (American Society of Plant Biologists, Rockville, MD, 2003), pp. 1–26.

    Google Scholar 

  9. D. P. Snustad, N. A. Haas, S. D. Kopczak, and C. D. Silflow, The small genome of Arabidopsis contains at least nine expressed β-tubulin genes, Plant Cell 4, 549–556 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. R. F. Luduena, Multiple forms of tubulin: different gene products and covalent modifications, Int. Rev. Cytol. 178, 207–275 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. T. H. MacRae, Tubulin post-translational modifications: enzymes and their mechanisms of action, Eur. J. Biochem. 244, 265–278 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. S. Westermann and K. Weber, Post-translational modifications regulate microtubule function, Nature Rev. 4, 938–947 (2003).

    Article  CAS  Google Scholar 

  13. D. Raybin and M. Flavin, An enzyme tyrosinating alpha-tubulin and its role in micro- tubule assembly, Biochem. Biophys. Res. Comm. 65, 1088–1095 (1975).

    Article  PubMed  CAS  Google Scholar 

  14. M. LeDizet and G. Piperno, Identification of an acetylation site of Chlamydomonas α- tubulin, Proc. Natl. Acad. Sci. USA 84, 5720–5724 (1987).

    Article  Google Scholar 

  15. B. Edde, J. Rossier, J. P. Le Caer, E. Desbryeres, F. Gros, and P. Denoulet, Post- translational glutamylation of α-tubulin, Science 247, 83–85 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. L. Paturle-Lafanechere, B. Edde, P. Denoulet, A. Van Dorsselaer, H. Mazarguil, J. P. Le Caer, J. Wehland, and D. Job, Characterization of a major tubulin variant which cannot be tyrosinated, Biochemistry 30, 10523–10528 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. V. Redeker, N. Levilliers, J. M. Schmitter, J. P. Le Caer, J. Rossier, A. Adoutte, and M. H. Bre, Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules, Science 266, 1688–1691 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. J. M. Andreu and J. M. Pereda, Site-directed antibodies to tubulin. Cell Motil. Cytoskel. 26, 1–6 (1993).

    Article  CAS  Google Scholar 

  19. A. Smertenko, Y. B. Blume, V. Viklicky, and P. Draber, Exposure of tubulin structural domains in Nicotiana tabacum microtubules probed by monoclonal antibodies, Eur. J. Cell Biol. 72, 104–112 (1997).

    PubMed  CAS  Google Scholar 

  20. Y. B. Blume, A. Smertenko, N. N. Ostapets, V. Viklicky, and P. Draber, Post- translational modifications of plant tubulin, Cell Biol. Int. 21, 918–920 (1997).

    Google Scholar 

  21. J. Wehland, M. Schroeder, and K. Weber, Organization of microtubules in stabilized meristematic plant cells revealed by a rat monoclonal antibody reacting only with the tyrosinated form of α-tubulin, Cell Biol. Int. Rept. 8, 147–150 (1984).

    Article  CAS  Google Scholar 

  22. P. J. Dawson and C. W. Lloyd, Identification of multiple tubulins in taxol microtubules purified from carrot suspension cells, EMBO J. 4, 2451–2455 (1985).

    PubMed  CAS  Google Scholar 

  23. G. P. Kerr and J. V. Carter, Microtubules of higher plant contain acetylated α-tubulin, J. Cell Biol. 107, 670a (1988).

    Google Scholar 

  24. Y. B. Blume, B. V. Mikitsey, V. G. Solodushko, and N. N. Ostapets, Is the phos- phorylation possible mechanism of cytoskeleton reorganization in plant cells? in: Abstr Third Int. Congress Plant Mol. Biol. “Mol. Biol. of Plant Growth and Development” (Oct. 6–11, 1991, Tucson, AZ), p. 1082.

    Google Scholar 

  25. Y. B. Blume, V. G. Solodushko, N. N. Ostapets, and Y. Y. Gleba, The posttranslational modifications of tubulin as universal mechanism of microtubule reorganization: existence in plant cells, in: Abstr 5th Int. Congress Cell Biol. (July 26–31. 1992, Madrid), p. 72.

    Google Scholar 

  26. K. Mizuno, Induction of cold stability of microtubules in cultured tobacco cells, Plant Physiol. 100, 740–748 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. J. Katsuta and H. Shibaoka, Inhibition by kinase inhibitors of the development and the disappearance of the preprophase band of microtubules in tobacco BY-2 cells, J. Cell Sci. 103, 397–405 (1992).

    CAS  Google Scholar 

  28. A. Nogami and Y. Minneyuki, Loosening of a preprophase band of microtubules in onion (Allium cepa L.) root tip cells by kinase inhibitors, Cell Struct. Funct. 24, 419–424 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. S. M. Wolniak and P. M. Larsen, Changes in the metaphase transit times and the pattern of sister chromatid separation in stamen hair cells of Tradescantia after treatment with protein phosphatase inhibitors,J. Cell Sci. 102, 691–6715 (1992).

    PubMed  CAS  Google Scholar 

  30. R. D. Smith, J. E. Wilson, J. C. Walker, and T. I. Baskin, Protein phosphatase inhibitors block root hair development and alter cell shape in Arabidopsis roots, Planta 194, 516– 524 (1994).

    Article  CAS  Google Scholar 

  31. I. Foissner, F. Grolig, and G. Obermeyer, Reversible protein phosphorylation regulates the dynamic organization of pollen tube cytoskeleton: effects of calyculin A and okadaic acid, Protoplasma220, 1–15 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. T. I. Baskin and J. E.Wilson, Inhibitors of protein kinases and phosphatases alter rootmorphology and disorganize cortical microtubules, Plant Physiol. 113, 493–502 (1997).

    Article  PubMed  CAS  Google Scholar 

  33. S. Hasezawa and T. Nagata, Okadaic acid as a probe to analyse the cell cycle progression in plant cells, Bot. Acta 105, 63–69 (1992).

    CAS  Google Scholar 

  34. K. Mizuno, Inhibition of gibberellin-induced elongation, reorientation of cortical microtubules and change of isoform of tubulin in epicotyl segments of azuki bean by protein kinase inhibitors, Plant Cell Physiol. 35, 1149–1157 (1994).

    CAS  Google Scholar 

  35. K. Zhang, Y. Tsukitani, and P. C. L. John, Mitotic arrest in tobacco caused by the phosphoprotein phosphatase inhibitor okadaic acid, Plant Cell Physiol. 33, 677–688 (1992).

    CAS  Google Scholar 

  36. R. J. Cyr, Calcium/calmodulin affects microtubule stability in lysed protoplasts, J. Cell Sci. 100, 311–317 (1991).

    CAS  Google Scholar 

  37. D. A. Koontz and J. H. Choi, Evidence for phosphorylation of tubulin in carrot suspension cells, Physiol. Plant. 87, 576–583 (1993).

    Article  CAS  Google Scholar 

  38. L. Roef, E. Witters, J. Gadeyne, J. Marcussen, R. P. Newton, and H. A. Van Onckelen, Analysis of 3’,5’-cAMP and adenylyl cyclase activity in higher plants using polyclonal chicken egg yolk antibodies, Anal. Biochem. 233, 188–196 (1996).

    Article  PubMed  CAS  Google Scholar 

  39. H. Richards, S. Das, C. J. Smith, L. Pereira, A. Geisbrecht, N. J. Devitt, D. E. Games, J. Van Geyschem, A. G. Brenton, and R. P. Newton, Cyclic nucleotide content of tobacco BY-2 cells, Phytochemistry61, 531–537 (2002).

    Article  PubMed  CAS  Google Scholar 

  40. A. Moutinho, P. J. Hussey, A. J. Trewavas, and R. Malho, cAMP acts as a second messenger in pollen tube growth and reorientation, Proc. Natl. Acad. Sci. USA 98, 10481–10486 (2001).

    Article  Google Scholar 

  41. D. Bridges, M. E. Fraser, and G. B. G. Moorhead, Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes, BMC Bioinformatics 6, 6 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. A. Yemets, Y. Sheremet, and Y. B. Blume, Does tubulin phosphorylation correlate with cell death in plant cells? BMC Plant Biol. 5(Suppl 1), S36 (2005) doi:10.1186/1471-2229-5-S1-S36.

    Article  Google Scholar 

  43. I. B. Gerber, K. Laukens, E. Witters, and I. A. Dubery, Lipopolysaccharide-responsive phosphoproteins in Nicotiana tabacum cells, Plant Physiol. Biochem. 44, 369–379(2006).

    Article  PubMed  CAS  Google Scholar 

  44. W.-P. Fang, C.-J. Jiang, M. Yu, A.-H. Ye, and Z.-X. Wang, Differentially expression of Tua1, a tubulin-encoding gene, during flowering of tea plant Camellia sinensis (L.) O. Kuntze using cDNA amplified fragment length polymorphism technique, Acta Biochim. Biophys. Sin., 38, 653–662 (2006).

    Article  PubMed  CAS  Google Scholar 

  45. S. M. Assmann, Cyclic AMP as a second messenger in higher plants: status and future prospects, Plant Physiol. 108, 885–889 (1995).

    PubMed  CAS  Google Scholar 

  46. A. J. Trewavas, Plant cyclic AMP comes in from the cold, Nature 390, 657–658 (1997).

    Article  PubMed  CAS  Google Scholar 

  47. N. A. Durso and R. J. Cyr, A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1 α, Plant Cell 6, 893–905 (1994).

    Article  PubMed  CAS  Google Scholar 

  48. C. Miege and E. Marechal, 1,2-sn-Diacylglycerol in plant cells: Product, substrate and regulator. Plant Physiol. Biochem. 37, 795–808 (1999).

    Article  PubMed  CAS  Google Scholar 

  49. V. Sundaresan and J. Colasanti, Cyclin-dependent kinases in higher plants: spatial and temporal control of cell division, in: Plant Cell Division, edited by D. Fransic, D. Dudits, and D. Inze (Portland Press, Portland, 1998), pp. 47–65.

    Google Scholar 

  50. L. Bogre, O. Calderini, P. Binarova, M. Mattauch, S. Till, S. Kiegerl, C. Jonak, C. Pollaschek, P Barker, N. S. Huskisson, H. Hirt, and E. Heberle-Bors, A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division, Plant Cell 11, 101–114 (1999).

    Article  PubMed  CAS  Google Scholar 

  51. L. Bogre, I. Meskiene, E. Heberle-Bors, and H. Hirt, Stressing the role of MAP kinases in mitogenic stimulation, Plant Mol. Biol. 43, 705–718 (2000).

    Article  PubMed  CAS  Google Scholar 

  52. J. Doonan, Social controls on cell proliferation in plants, Curr. Opin. Plant Biol. 3, 482–487 (2000).

    Article  PubMed  CAS  Google Scholar 

  53. L. Cassimeris, Accessory protein regulation of microtubule dynamics throughout the cell cycle, Curr. Opin. Cell Biol. 11, 134–141 (1999).

    Article  PubMed  CAS  Google Scholar 

  54. J. Joubes, C. Chevalier, D. Dudits, E. Herberle-Bors, D. Inze, M. Umeda, and J. P. Renaudin, CDK-related protein kinases in plants, Plant Mol. Biol. 43, 607–620 (2000).

    Article  PubMed  CAS  Google Scholar 

  55. L. Bogre, K. Zwerger, I. Meskiene, P. Binarova, V. Csizmadia, C. Planck, E. Wagner, H. Hirt, and E. Heberle-Bors, The cdc2Ms kinase is differently regulated in the cytoplasm and in the nucleus, Plant Physiol. 113, 841–852 (1997).

    PubMed  Google Scholar 

  56. A. Hemerly, J. A. Engler, C. Bergounioux, M. Van Montagu, G. Engler, D. Inzй, and P. Ferreira, Dominant negative mutants of the Cdc2 kinase uncouple cell division fromiterative plant development, EMBO J. 14, 3925–3936 (1995).

    PubMed  CAS  Google Scholar 

  57. P. Binarova, J. Dolezel, P. Draber, E. Heberle-Bors, M. Strnad, and L. Bogre, Treatment of Vicia faba root tip cells with specific inhibitors to cyclin-dependent kinases leads to abnormal spindle formation, Plant J. 16, 697–707 (1998).

    Article  PubMed  CAS  Google Scholar 

  58. J. M. Healy, M. Menges, J. H. Doonan, and J. A. Murray, The Arabidopsis D-type cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-dependent kinase Cdc2a but are differently controlled, J. Biol. Chem. 276, 7041–7047 (2000).

    Article  PubMed  Google Scholar 

  59. F. Roudier, E. Fedorova, J. Gyorgyey, F. Feher, S. Brown, A. Kondorosi, and E. Kondorosi, Cell cycle function of a Medicago sativa A2-type cyclin interacting with a PSTAIRE-type cyclin-dependent kinase and a retinoblastome protein, Plant J. 23, 73–83 (2000).

    Article  PubMed  CAS  Google Scholar 

  60. J. Doonan and P. Fobert, Conserved and novel regulators of the plant cell cycle, Curr. Opin. Cell Biol. 9, 824–830 (1997).

    Article  PubMed  CAS  Google Scholar 

  61. P. R. Fobert, V. Gaudin, P. Lunness, E. S. Coen, and J. H.Doonan, Distinct classes of cdc2-related genes are differentially expressed during the cell division cycle in plants, Plant Cell 8, 1465–1476 (1996).

    Article  PubMed  CAS  Google Scholar 

  62. J. Lee, A. Das, M. Yamaguchi, J. Hashimoto, N. Tsutsumi, Y. Uchimiya, and M. Umeda, Cell cycle function of a rice B2-type cyclin-dependent kinase. Plant J. 34, 417–425 (2003).

    Article  PubMed  CAS  Google Scholar 

  63. J. Colasanti, S. O. Cho, S. Wick, and V. Sundaresan, Localization of the functional p34cdc2 homologue of maize in root tip and stomatal complex cells: association with predicted division sites, Plant Cell. 5, 1101–1111 (1993).

    Article  PubMed  CAS  Google Scholar 

  64. T. Meszaros, P. Miskolczi, F. Ayaydin, A. Pettko-Szandtner, A. Peres, Z. Magyar, G. V. Horvath, L. Bako, A. Feher, and D. Dudits, Multiple cyclin-dependent kinase complexes and phosphatases control G2/M progression in alfalfa cells, Plant Mol. Biol. 43, 595–605 (2000).

    Article  PubMed  CAS  Google Scholar 

  65. Y. Mineyuki, The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plants, Int. Rev. Cytol. 187, 1–49 (1999).

    Article  Google Scholar 

  66. H. Stals, S. Bauwens, J. Traas, M. Van Montagu, G. Engler,and D. Inze, Plant CDC2 is not only targeted to the pre-prophase band, but also co-localizes with the spindle,phragmoplast, and chromosomes, FEBS Lett. 418, 229–234 (1997).

    Article  PubMed  CAS  Google Scholar 

  67. R. Hemsley, S. McCutcheon, J. Doonan, and C. Lloyd, P34(cdc2) kinase is associatedwith cortical microtubules from higher plant protoplasts, FEBS Lett. 508, 157–161 (2001).

    Article  PubMed  CAS  Google Scholar 

  68. F. Ayaydin, E. Vissi, T. Meszaros, P. Miskolczi, I. Kovacs, A. Feher, V. Dombradi, F. Erdodi, P. Gergely, and D. Dudits, Inhibition of serine/threonine-specific protein phosphatases causes premature activation of cdc2MsF kinase at G2/M transition and early mitotic microtubule organisation in alfalfa, Plant J. 23, 3985–3995 (2000).

    Article  Google Scholar 

  69. J. M. Hush, L. Wu, P. C. L. John, L. H. Hepler, and P. K. Hepler, Plant mitosis promoting factors disassembles the microtubule preprophase band and accelerates prophase progression in Tradescantia, Cell Biol. Int. 20, 275–287 (1996).

    Article  PubMed  CAS  Google Scholar 

  70. T. Asada, R. Kuriyama, and H. Shibaoka, TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco BY-2 cells, J. Cell Sci. 110, 179–189 (1997).

    PubMed  CAS  Google Scholar 

  71. O. Calderini, L. Bogre, O. Vicente, P. Binarova, E. Heberle-Bors, and C. Wilson, A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J. Cell Sci. 111, 3091–3100 (1998).

    PubMed  CAS  Google Scholar 

  72. M. Weingartner, P. Binarova, D. Drykova, A. Schweighofer, J. P. David, E. Heberle-Bors, J. Doonan, and L. Bogre, Dynamic recruitment of Cdc2 to specific tubule structures during mitosis, Plant Cell 13, 1929–1943 (2001).

    Article  PubMed  CAS  Google Scholar 

  73. S. P. Wheatley, E. H. Hinchcliffe, M. Glotzer, A. A. Hyman, G. Sluder, and Y. Wang, CDK1 inactivation regulates anaphase spindle dynamics and cytokinesis in vivo, J. Cell Biol. 138, 385–393 (1997).

    Article  PubMed  CAS  Google Scholar 

  74. A. Yemets, Y. Sheremet, K. Vissenberg, J. Van Orden, J. P. Verbelen, and Y. B. Blume, Effects of tyrosine kinase and phosphatase inhibitors on microtubules in Arabidopsis root cells, Cell Biol. Int. 32, (2008) doi:10.1016/j.cellbi.2008.01.013.

    Google Scholar 

  75. Y. B. Blume, A. I. Yemets, V. Viklicky, and P. Draber, Post-translational modifications of multiple tubulin (Tub) genes, Mol. Biol. Cell10, 141a (1999).

    Google Scholar 

  76. R. Tournebize, S. S. Andersen, F. Verde, M. Doree, E. Karsenti, and A. A. Hyman, Distinct roles of PP1 and PPA-like phosphatase in control of microtubule dynamics during mitosis, EMBO J. 16, 5537–5549 (1997).

    Article  PubMed  CAS  Google Scholar 

  77. A. Arundhati, H. Feiler, J. Traas, H. Zhang, P. A. Lunness, and J. H. Doonan, A novel Arabidopsis type 1 protein phosphatase is highly expressed in male and female tissues and functionally complements a conditional cell cycle mutant of Aspergillus, Plant J. 7, 823–834 (1995).

    Article  PubMed  CAS  Google Scholar 

  78. P. L. Rodriguez, M. P. Leube, and E. Grill, Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C (PP2C) with homology to ABI1 and ABI2, Plant Mol. Biol. 38, 879–883 (1998).

    Article  PubMed  CAS  Google Scholar 

  79. O. S. Awotunde, K. Lechward, K. Krajewska, S. Zolnierowicz, and G. Muszynska, Interaction of maize (Zea mays) protein phosphatase 2A with tubulin, Acta Biochim. Polonica 50,131–138 (2003).

    CAS  Google Scholar 

  80. G.-W. Tian, D. Smith, S. Gluck, and T. I. Baskin, Higher plant cortical microtubule array analyzed in vitro in the presence of the cell wall, Cell Motil. Cytoskeleton 57, 26–36 (2004).

    Article  PubMed  CAS  Google Scholar 

  81. C. Camilleri, J. Azimzadeh, M. Pastuglia, C. Bellini, O. Grandjean, and D. Bouchez, The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton, Plant Cell 14, 833–845 (2002).

    Article  PubMed  CAS  Google Scholar 

  82. K. Naoi and T. Hashimoto, A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization, Plant Cell16, 1841–1853 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Blume, Y.B., Lloyd, C.W., Yemets, A.I. (2008). Plant Tubulin Phosphorylation And Its Role In Cell Cycle Progression. In: Blume, Y.B., Baird, W.V., Yemets, A.I., Breviario, D. (eds) The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8843-8_7

Download citation

Publish with us

Policies and ethics