Skip to main content

The Microtubule Proteome: A Role in Regulating Protein Synthesis and Import Into Organelles?

  • Conference paper
  • 700 Accesses

Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Microtubules (MTs) are dynamic components of plant cells, and are organized into four major arrays. The growth and organization of MTs in these arrays is regulated by a group of structural proteins called the microtubule-associated proteins (MAPs). A number of MAPs have been identified in plants, some of which are plant-specific. Another group of MT-binding proteins that are well represented in plants are the kinesin-related motor proteins. A third and more loosely defined group of proteins that bind to MTs are the MT-interacting proteins. Binding of these proteins to MTs can serve to concentrate the protein, to regulate the activity of the protein, or to serve other functions. Numerous putative MT-interacting proteins were identified in two large-scaled studies. A group of proteins that were represented in one of these studies were peroxisomal matrix proteins. The MT and RNA binding activity of these peroxisomal proteins has led to a model that links MTs to protein synthesis and targeting of these proteins to peroxisomes.

Keywords

  • Microtubule
  • proteome
  • translational control
  • microtubule-interacting protein
  • peroxisome

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-8843-8_13
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-8843-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Lloyd and P. Hussey, Microtubule-associated proteins in plants: why we need a MAP, Nat. Rev. Mol. Cell. Biol. 2, 40 – 47 (2001).

    PubMed  CrossRef  CAS  Google Scholar 

  2. G. O. Wasteneys, Microtubule organization in the green kingdom: chaos or self-order? J. Cell Sci. 115, 1345 – 1354 (2002).

    PubMed  CAS  Google Scholar 

  3. C. Lloyd and J. Chan, Microtubules and the shape of plants to come, Nat. Rev. Mol. Cell. Biol. 5, 13 – 22 (2004).

    PubMed  CrossRef  CAS  Google Scholar 

  4. A. R. Paredez, C. R. Somerville, and D. W. Ehrhardt, Visualization of cellulose synthase demonstrates functional association with microtubules, Science 312, 1491 – 1495 (2006).

    PubMed  CrossRef  CAS  Google Scholar 

  5. G. O. Wasteneys, Progress in understanding the role of microtubules in plant cells, Curr. Opin. Plant Biol. 7, 651 – 660 (2004).

    PubMed  CrossRef  CAS  Google Scholar 

  6. J. M. Hush, P. Wadsworth, D. A. Callaham, and P. K. Hepler, Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching, J. Cell Sci. 107 (Pt 4), 775 – 784 (1994).

    PubMed  Google Scholar 

  7. S. L. Shaw, R. Kamyar, and D. W. Ehrhardt, Sustained microtubule treadmilling in Arabidopsis cortical arrays, Science 300, 1715 – 1718 (2003).

    PubMed  CrossRef  CAS  Google Scholar 

  8. M. Yuan, P. J. Shaw, R. M. Warn, and C. W. Lloyd, Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells, Proc. Natl. Acad. Sci. U.S.A. 91, 6050 – 6053 (1994).

    PubMed  CrossRef  CAS  Google Scholar 

  9. J. C. Sedbrook, MAPs in plant cells: delineating microtubule growth dynamics and organization, Curr. Opin. Plant Biol. 7, 632 – 640 (2004).

    PubMed  CrossRef  CAS  Google Scholar 

  10. C. Lloyd, C. Chan, and P. Hussey, in: The Plant Cytoskeleton in Cell Differentiation and Development, edited by P. J. Hussey (Blackwell, Oxford, 2004), pp. 3 – 31.

    Google Scholar 

  11. E. Mandelkow and E. M. Mandelkow, Microtubules and microtubule-associated proteins, Curr. Opin. Cell Biol. 7, 72 – 81 (1995).

    PubMed  CrossRef  CAS  Google Scholar 

  12. R. B. Maccioni and V. Cambiazo, Role of microtubule-associated proteins in the control of microtubule assembly, Physiol. Rev. 75, 835 – 864 (1995).

    PubMed  CAS  Google Scholar 

  13. S. D. Chuong, A. G. Good, G. J. Taylor, M. C. Freeman, G. B. Moorhead, and D. G. Muench, Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells, Mol. Cell. Proteomics 3, 970 – 983 (2004).

    PubMed  CrossRef  CAS  Google Scholar 

  14. T. Hamada, Microtubule-associated proteins in higher plants, J. Plant Res. 120, 79 – 98 (2007).

    PubMed  CrossRef  CAS  Google Scholar 

  15. J. Gardiner and J. Marc, Putative microtubule-associated proteins from the Arabidopsis genome, Protoplasma 222, 61 – 74 (2003).

    PubMed  CrossRef  CAS  Google Scholar 

  16. R. B. Meagher and M. Fechheimer, in: The Arabidopsis Book, edited by C. R. Somerville and E. M. Meyerowitz (American Society of Plant Biologists, Rockville, MD, 2003).

    Google Scholar 

  17. A. V. Korolev, J. Chan, M. J. Naldrett, J. H. Doonan, and C. W. Lloyd, Identification of a novel family of 70 kDa microtubule-associated proteins in Arabidopsis cells, Plant J. 42, 547 – 555 (2005).

    PubMed  CrossRef  CAS  Google Scholar 

  18. L. Vickerman and D. G. Muench, in: Plant Proteomics: Technologies, Strategies and Applications, edited by R. Rakwal (Wiley Interscience, USA, 2008) 275 – 289.

    Google Scholar 

  19. J. C. Ambrose, T. Shoji, A. M. Kotzer, J. A. Pighin, and G. O. Wasteneys, The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division, Plant Cell 19, 2763 – 2775 (2007).

    PubMed  CrossRef  CAS  Google Scholar 

  20. V. Kirik, U. Herrmann, C. Parupalli, J. C. Sedbrook, D. W. Ehrhardt, and M. Hulskamp, CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis, J. Cell Sci. 120, 4416 – 4425 (2007).

    PubMed  CrossRef  CAS  Google Scholar 

  21. A. T. Whittington, O. Vugrek, K. J. Wei, N. G. Hasenbein, K. Sugimoto, M. C. Rashbrooke, and G. O. Wasteneys, MOR1 is essential for organizing cortical microtubules in plants, Nature 411, 610 – 613 (2001).

    PubMed  CrossRef  CAS  Google Scholar 

  22. R. Zhong, D. H. Burk, W. H. Morrison, 3rd, and Z. H. Ye, A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength, Plant Cell 14, 3101 – 3117 (2002).

    PubMed  CrossRef  CAS  Google Scholar 

  23. R. J. Cyr and B. A. Palevitz, Microtubule-binding proteins from carrot 1. Initial characterization and microtubule bundling, Planta 177, 245 – 260 (1989).

    CrossRef  CAS  Google Scholar 

  24. M. Vantard, P. Schellenbaum, A. Fellous, and A. M. Lambert, Characterization of maize microtubule-associated proteins, one of which is immunologically related to tau, Biochemistry 30, 9334 – 9340 (1991).

    PubMed  CrossRef  CAS  Google Scholar 

  25. C.-J. Jiang and S. Sonobe, Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein, J. Cell Sci. 105, 891–901 (1993).

    CAS  Google Scholar 

  26. M. Sasabe and Y. Machida, MAP65: a bridge linking a MAP kinase to microtubule turnover, Curr. Opin. Plant Biol. 9, 563–570 (2006).

    PubMed  CrossRef  CAS  Google Scholar 

  27. D. Van Damme, K. Van Poucke, E. Boutant, C. Ritzenthaler, D. Inze, and D. Geelen, In vivo dynamics and differential microtubule-binding activities of MAP65 proteins, Plant Physiol. 136, 3956–3967 (2004).

    PubMed  CrossRef  Google Scholar 

  28. A. V. Korolev, H. Buschmann, J. H. Doonan, and C. W. Lloyd, AtMAP70-5, a divergent member of the MAP70 family of microtubule-associated proteins, is required for anisotropic cell growth in Arabidopsis, J. Cell Sci. 120, 2241–2247 (2007).

    PubMed  CrossRef  CAS  Google Scholar 

  29. N. A. Durso and R. J. Cyr, A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1a, Plant Cell 6, 893–905 (1994).

    PubMed  CrossRef  CAS  Google Scholar 

  30. K. A. Suprenant, L. B. Tempero, and L. E. Hammer, Association of ribosomes with in vitro assembled microtubules, Cell Motil. Cytoskel. 14, 401–415 (1989).

    CrossRef  CAS  Google Scholar 

  31. J. Marc, D. E. Sharkey, N. A. Durso, M. Zhang, and R. J. Cyr, Isolation of a 90-kD Microtubule-Associated Protein from Tobacco Membranes, Plant Cell 8, 2127–2138 (1996).

    PubMed  CrossRef  CAS  Google Scholar 

  32. K. G. Miller, C. M. Field, B. M. Alberts, and D. R. Kellogg, Use of actin filament and microtubule affinity chromatography to identify proteins that bind to the cytoskeleton, Methods Enzymol. 196, 303–319 (1991).

    PubMed  CrossRef  CAS  Google Scholar 

  33. D. R. Kellogg, C. M. Field, and B. M. Alberts, Identification of microtubule-associated proteins in the centrosome, spindle, and kinetochore of the early Drosophila embryo, J. Cell Biol. 109, 2977–2991 (1989).

    PubMed  CrossRef  CAS  Google Scholar 

  34. N. Balaban and R. Goldman, Isolation and characterization of a unique 15 kilodalton trypanosome subpellicular microtubule-associated protein, Cell Motil. Cytoskeleton 21, 138–146 (1992).

    PubMed  CrossRef  CAS  Google Scholar 

  35. S. D. X. Chuong, R. Mullen, and D. G. Muench, Identification of a rice RNA- and MTbinding protein as the multifunctional protein (MFP), a peroxisomal enzyme involved in the b-oxidation of fatty acids, J. Biol. Chem. 277, 2419–2429 (2002).

    PubMed  CrossRef  CAS  Google Scholar 

  36. J. C. Gardiner, J. D. I. Harper, N. D. Weerakoon, D. A. Collings, S. Ritchie, S. Gilroy, R. J. Cyr, and J. Marc, A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane, Plant Cell 13, 2143– 2158 (2001).

    PubMed  CrossRef  CAS  Google Scholar 

  37. P. Dhonukshe, A. M. Laxalt, J. Goedhart, T. W. Gadella, and T. Munnik, Phospholipased activation correlates with microtubule reorganization in living plant cells, Plant Cell 15, 2666– 2679 (2003).

    PubMed  CrossRef  CAS  Google Scholar 

  38. J. Gardiner, D. A. Collings, J. D. Harper, and J. Marc, The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis, Plant Cell Physiol. 44, 687– 696 (2003).

    PubMed  CrossRef  CAS  Google Scholar 

  39. R. C. Moore and R. J. Cyr, Association between elongation factor-1alpha and microtubules in vivo is domain dependent and conditional, Cell Motil. Cytoskeleton 45, 279– 292 (2000).

    PubMed  CrossRef  CAS  Google Scholar 

  40. S. D. Chuong, R. T. Mullen, and D. G. Muench, The peroxisomal multifunctional protein interacts with cortical microtubules in plant cells, BMC Cell Biol. 6, 40 (2005).

    PubMed  CrossRef  Google Scholar 

  41. H. Buschmann, J. Chan, L. Sanchez-Pulido, M. A. Andrade-Navarro, J. H. Doonan, and C. W. Lloyd, Microtubule-associated AIR9 recognizes the cortical division site at preprophase and cell-plate insertion, Curr. Biol. 16, 1938– 1943 (2006).

    PubMed  CrossRef  CAS  Google Scholar 

  42. A. P. Smertenko, H. Y. Chang, S. Sonobe, S. I. Fenyk, M. Weingartner, L. Bogre, and P. J. Hussey, Control of the AtMAP65-1 interaction with microtubules through the cell cycle, J. Cell Sci. 119, 3227– 3237 (2006).

    PubMed  CrossRef  CAS  Google Scholar 

  43. R.-P. Jansen, mRNA localization: message on the move, Nat. Rev. Mol. Cell. Biol. 2, 247 – 256 (2001).

    PubMed  CrossRef  CAS  Google Scholar 

  44. Z. Elisha, L. Havin, I. Ringel, and J. K. Yisraei, Vg1 RNA binding protein mediates the association of Vg1 RNA with microtubules in Xenopus oocytes., EMBO J. 14, 5109 – 5114 (1995).

    PubMed  CAS  Google Scholar 

  45. J. O. Deshler, M. I. Highett, T. Abramson, and B. Schnapp, A highly conserved RNA-binding protein for cytoplasmic mRNA localization in vertebrates, Curr. Biol. 8, 489 – 496 (1997).

    CrossRef  Google Scholar 

  46. L. Wickham, T. Duchaîne, M. Luo, I. R. Nabi, and L. DesGroseillers, Mammalian staufen is a double-stranded-RNA and tubulin-binding protein which localizes to the rough endoplasmic reticulum, Mol. Cell Biol. 19, 2220 – 2230 (1999).

    PubMed  CAS  Google Scholar 

  47. R.-P. Jansen, RNA-cytoskeletal associations, FASEB J 13, 455 – 466 (1999).

    PubMed  CAS  Google Scholar 

  48. D. G. Muench and N. I. Park, Messages on the move: the role of the cytoskeleton in mRNA localization and translation in plant cells, Can. J. Bot. 84, 572 – 580 (2006).

    CrossRef  CAS  Google Scholar 

  49. X. Li, V. R. Franceschi, and T. W. Okita, Segregation of storage protein mRNAs on the rough endoplasmic reticulum membranes of rice endosperm cells, Cell 72, 869 – 879 (1993).

    PubMed  CrossRef  CAS  Google Scholar 

  50. D. G. Muench, Y. Wu, S. J. Coughlan, and T. W. Okita, Evidence for a cytoskeleton-associated binding site involved in prolamine mRNA localization to the protein bodies in rice endosperm tissue, Plant Physiol. 116, 559 – 569 (1998).

    PubMed  CrossRef  CAS  Google Scholar 

  51. S. Hamada, K. Ishiyama, S. B. Choi, C. Wang, S. Singh, N. Kawai, V. R. Franceschi, and T. W. Okita, The transport of prolamine RNAs to prolamine protein bodies in living rice endosperm cells, Plant Cell 15, 2253 – 2264 (2003).

    PubMed  CrossRef  CAS  Google Scholar 

  52. J. Lane and V. Allan, Microtubule-based membrane movement, Biochim. Biophys. Acta 1376, 27 – 55 (1998).

    PubMed  CAS  Google Scholar 

  53. M. Wada and N. Suetsugu, Plant organelle positioning, Curr. Opin. Plant Biol. 7, 626 – 631 (2004).

    PubMed  CrossRef  CAS  Google Scholar 

  54. C. R. Hawes and B. Satiat-Jeunemaitre, Trekking along the cytoskeleton, Plant Physiol. 125, 119 – 122 (2001).

    PubMed  CrossRef  CAS  Google Scholar 

  55. K. Van Gestel, R. H. Kohler, and J. P. Verbelen, Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules, J. Exp. Bot. 53, 659 – 667 (2002).

    PubMed  CrossRef  Google Scholar 

  56. P. Boevink, K. Oparka, S. Santa Cruz, B. Martin, A. Betteridge, and C. Hawes, Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network, Plant J. 15, 441 – 447 (1998).

    PubMed  CrossRef  CAS  Google Scholar 

  57. D. G. Muench and R. T. Mullen, Peroxisome dynamics in plant cells: a role for the cytoskeleton, Plant Sci. 164, 307 – 315 (2003).

    CrossRef  CAS  Google Scholar 

  58. A. Nebenfuhr, L. A. Gallagher, T. G. Dunahay, J. A. Frohlick, A. M. Mazurkiewicz, J. B. Meehl, and L. A. Staehelin, Stop-and-go movements of plant Golgi stacks are mediated by the acto- myosin system, Plant Physiol. 121, 1127 – 1142. (1999).

    PubMed  CrossRef  CAS  Google Scholar 

  59. M. K. Kandasamy and R. B. Meagher, Actin-organelle interaction: association with chloroplast in arabidopsis leaf mesophyll cells, Cell Motil. Cytoskeleton 44, 110 – 118 (1999).

    PubMed  CrossRef  CAS  Google Scholar 

  60. L. Lu, Y. R. Lee, R. Pan, J. N. Maloof, and B. Liu, An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis, Mol. Biol. Cell 16, 811 – 823 (2005).

    PubMed  CrossRef  CAS  Google Scholar 

  61. E. Y. Kwok and M. R. Hanson, Microfilaments and microtubules control the morphology and movement of non-green plastids and stromules in Nicotiana tabacum, Plant J. 35, 16 – 26 (2003).

    PubMed  CrossRef  Google Scholar 

  62. Y. Sato, M. Wada, and A. Kadota, Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor, J. Cell Sci. 114, 269 – 279 (2001).

    PubMed  CAS  Google Scholar 

  63. I. Foissner, Microfilaments and microtubules control the shape, motility, and subcellular distribution of cortical mitochondria in characean internodal cells, Protoplasma 224, 145 – 157 (2004).

    PubMed  CrossRef  CAS  Google Scholar 

  64. Y. R. Lee, H. M. Giang, and B. Liu, A novel plant kinesin-related protein specifically associates with the phragmoplast organelles, Plant Cell 13, 2427 – 2439 (2001).

    PubMed  CrossRef  CAS  Google Scholar 

  65. S. L. Gupton, D. A. Collings, and N. S. Allen, Endoplasmic reticulum targeted GFP reveals ER organization in tobacco NT-1 cells during cell division, Plant Physiol. Biochem. 44, 95 – 105 (2006).

    PubMed  CrossRef  CAS  Google Scholar 

  66. M. Garcia, X. Darzacq, T. Delaveau, L. Jourdren, R. H. Singer, and C. Jacq, Mitochondria-associated yeast mRNAs and the biogenesis of molecular complexes, Mol. Biol. Cell 18, 362 – 368 (2007).

    PubMed  CrossRef  CAS  Google Scholar 

  67. S. Subramani, Hitchhiking fads en route to peroxisomes, J. Cell Biol. 156, 415 – 417. (2002).

    PubMed  CrossRef  CAS  Google Scholar 

  68. J. D. I. Harper, N. D. Weerakoon, J. C. Gardiner, L. M. Blackman, and J. Marc, A 75-kDa plant protein isolated by tubulin-affinity chromatography is a peroxisomal matrix enzyme, Can. J. Bot. 80, 1018 – 1027 (2002).

    CrossRef  CAS  Google Scholar 

  69. X. Liu, B. Reig, I. M. Nasrallah, and P. J. Stover, Human cytoplasmic serine hydroxymethyltransferase is an mRNA binding protein, Biochemistry 39, 11523 – 11531 (2000).

    PubMed  CrossRef  CAS  Google Scholar 

  70. N. Tai, J. C. Schmitz, J. Liu, X. Lin, M. Bailly, T. M. Chen, and E. Chu, Translational autoregulation of thymidylate synthase and dihydrofolate reductase, Front Biosci. 9, 2521 – 2526 (2004).

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Quilichini, T.D., Muench*, D.G. (2008). The Microtubule Proteome: A Role in Regulating Protein Synthesis and Import Into Organelles?. In: Blume, Y.B., Baird, W.V., Yemets, A.I., Breviario, D. (eds) The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8843-8_13

Download citation