C. Lloyd and P. Hussey, Microtubule-associated proteins in plants: why we need a MAP, Nat. Rev. Mol. Cell. Biol. 2, 40 – 47 (2001).
PubMed
CrossRef
CAS
Google Scholar
G. O. Wasteneys, Microtubule organization in the green kingdom: chaos or self-order? J. Cell Sci. 115, 1345 – 1354 (2002).
PubMed
CAS
Google Scholar
C. Lloyd and J. Chan, Microtubules and the shape of plants to come, Nat. Rev. Mol. Cell. Biol. 5, 13 – 22 (2004).
PubMed
CrossRef
CAS
Google Scholar
A. R. Paredez, C. R. Somerville, and D. W. Ehrhardt, Visualization of cellulose synthase demonstrates functional association with microtubules, Science 312, 1491 – 1495 (2006).
PubMed
CrossRef
CAS
Google Scholar
G. O. Wasteneys, Progress in understanding the role of microtubules in plant cells, Curr. Opin. Plant Biol. 7, 651 – 660 (2004).
PubMed
CrossRef
CAS
Google Scholar
J. M. Hush, P. Wadsworth, D. A. Callaham, and P. K. Hepler, Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching, J. Cell Sci. 107 (Pt 4), 775 – 784 (1994).
PubMed
Google Scholar
S. L. Shaw, R. Kamyar, and D. W. Ehrhardt, Sustained microtubule treadmilling in Arabidopsis cortical arrays, Science 300, 1715 – 1718 (2003).
PubMed
CrossRef
CAS
Google Scholar
M. Yuan, P. J. Shaw, R. M. Warn, and C. W. Lloyd, Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells, Proc. Natl. Acad. Sci. U.S.A. 91, 6050 – 6053 (1994).
PubMed
CrossRef
CAS
Google Scholar
J. C. Sedbrook, MAPs in plant cells: delineating microtubule growth dynamics and organization, Curr. Opin. Plant Biol. 7, 632 – 640 (2004).
PubMed
CrossRef
CAS
Google Scholar
C. Lloyd, C. Chan, and P. Hussey, in: The Plant Cytoskeleton in Cell Differentiation and Development, edited by P. J. Hussey (Blackwell, Oxford, 2004), pp. 3 – 31.
Google Scholar
E. Mandelkow and E. M. Mandelkow, Microtubules and microtubule-associated proteins, Curr. Opin. Cell Biol. 7, 72 – 81 (1995).
PubMed
CrossRef
CAS
Google Scholar
R. B. Maccioni and V. Cambiazo, Role of microtubule-associated proteins in the control of microtubule assembly, Physiol. Rev. 75, 835 – 864 (1995).
PubMed
CAS
Google Scholar
S. D. Chuong, A. G. Good, G. J. Taylor, M. C. Freeman, G. B. Moorhead, and D. G. Muench, Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells, Mol. Cell. Proteomics 3, 970 – 983 (2004).
PubMed
CrossRef
CAS
Google Scholar
T. Hamada, Microtubule-associated proteins in higher plants, J. Plant Res. 120, 79 – 98 (2007).
PubMed
CrossRef
CAS
Google Scholar
J. Gardiner and J. Marc, Putative microtubule-associated proteins from the Arabidopsis genome, Protoplasma 222, 61 – 74 (2003).
PubMed
CrossRef
CAS
Google Scholar
R. B. Meagher and M. Fechheimer, in: The Arabidopsis Book, edited by C. R. Somerville and E. M. Meyerowitz (American Society of Plant Biologists, Rockville, MD, 2003).
Google Scholar
A. V. Korolev, J. Chan, M. J. Naldrett, J. H. Doonan, and C. W. Lloyd, Identification of a novel family of 70 kDa microtubule-associated proteins in Arabidopsis cells, Plant J. 42, 547 – 555 (2005).
PubMed
CrossRef
CAS
Google Scholar
L. Vickerman and D. G. Muench, in: Plant Proteomics: Technologies, Strategies and Applications, edited by R. Rakwal (Wiley Interscience, USA, 2008) 275 – 289.
Google Scholar
J. C. Ambrose, T. Shoji, A. M. Kotzer, J. A. Pighin, and G. O. Wasteneys, The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division, Plant Cell 19, 2763 – 2775 (2007).
PubMed
CrossRef
CAS
Google Scholar
V. Kirik, U. Herrmann, C. Parupalli, J. C. Sedbrook, D. W. Ehrhardt, and M. Hulskamp, CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis, J. Cell Sci. 120, 4416 – 4425 (2007).
PubMed
CrossRef
CAS
Google Scholar
A. T. Whittington, O. Vugrek, K. J. Wei, N. G. Hasenbein, K. Sugimoto, M. C. Rashbrooke, and G. O. Wasteneys, MOR1 is essential for organizing cortical microtubules in plants, Nature 411, 610 – 613 (2001).
PubMed
CrossRef
CAS
Google Scholar
R. Zhong, D. H. Burk, W. H. Morrison, 3rd, and Z. H. Ye, A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength, Plant Cell 14, 3101 – 3117 (2002).
PubMed
CrossRef
CAS
Google Scholar
R. J. Cyr and B. A. Palevitz, Microtubule-binding proteins from carrot 1. Initial characterization and microtubule bundling, Planta 177, 245 – 260 (1989).
CrossRef
CAS
Google Scholar
M. Vantard, P. Schellenbaum, A. Fellous, and A. M. Lambert, Characterization of maize microtubule-associated proteins, one of which is immunologically related to tau, Biochemistry 30, 9334 – 9340 (1991).
PubMed
CrossRef
CAS
Google Scholar
C.-J. Jiang and S. Sonobe, Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein, J. Cell Sci. 105, 891–901 (1993).
CAS
Google Scholar
M. Sasabe and Y. Machida, MAP65: a bridge linking a MAP kinase to microtubule turnover, Curr. Opin. Plant Biol. 9, 563–570 (2006).
PubMed
CrossRef
CAS
Google Scholar
D. Van Damme, K. Van Poucke, E. Boutant, C. Ritzenthaler, D. Inze, and D. Geelen, In vivo dynamics and differential microtubule-binding activities of MAP65 proteins, Plant Physiol. 136, 3956–3967 (2004).
PubMed
CrossRef
Google Scholar
A. V. Korolev, H. Buschmann, J. H. Doonan, and C. W. Lloyd, AtMAP70-5, a divergent member of the MAP70 family of microtubule-associated proteins, is required for anisotropic cell growth in Arabidopsis, J. Cell Sci. 120, 2241–2247 (2007).
PubMed
CrossRef
CAS
Google Scholar
N. A. Durso and R. J. Cyr, A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1a, Plant Cell 6, 893–905 (1994).
PubMed
CrossRef
CAS
Google Scholar
K. A. Suprenant, L. B. Tempero, and L. E. Hammer, Association of ribosomes with in vitro assembled microtubules, Cell Motil. Cytoskel. 14, 401–415 (1989).
CrossRef
CAS
Google Scholar
J. Marc, D. E. Sharkey, N. A. Durso, M. Zhang, and R. J. Cyr, Isolation of a 90-kD Microtubule-Associated Protein from Tobacco Membranes, Plant Cell 8, 2127–2138 (1996).
PubMed
CrossRef
CAS
Google Scholar
K. G. Miller, C. M. Field, B. M. Alberts, and D. R. Kellogg, Use of actin filament and microtubule affinity chromatography to identify proteins that bind to the cytoskeleton, Methods Enzymol. 196, 303–319 (1991).
PubMed
CrossRef
CAS
Google Scholar
D. R. Kellogg, C. M. Field, and B. M. Alberts, Identification of microtubule-associated proteins in the centrosome, spindle, and kinetochore of the early Drosophila embryo, J. Cell Biol. 109, 2977–2991 (1989).
PubMed
CrossRef
CAS
Google Scholar
N. Balaban and R. Goldman, Isolation and characterization of a unique 15 kilodalton trypanosome subpellicular microtubule-associated protein, Cell Motil. Cytoskeleton 21, 138–146 (1992).
PubMed
CrossRef
CAS
Google Scholar
S. D. X. Chuong, R. Mullen, and D. G. Muench, Identification of a rice RNA- and MTbinding protein as the multifunctional protein (MFP), a peroxisomal enzyme involved in the b-oxidation of fatty acids, J. Biol. Chem. 277, 2419–2429 (2002).
PubMed
CrossRef
CAS
Google Scholar
J. C. Gardiner, J. D. I. Harper, N. D. Weerakoon, D. A. Collings, S. Ritchie, S. Gilroy, R. J. Cyr, and J. Marc, A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane, Plant Cell 13, 2143– 2158 (2001).
PubMed
CrossRef
CAS
Google Scholar
P. Dhonukshe, A. M. Laxalt, J. Goedhart, T. W. Gadella, and T. Munnik, Phospholipased activation correlates with microtubule reorganization in living plant cells, Plant Cell 15, 2666– 2679 (2003).
PubMed
CrossRef
CAS
Google Scholar
J. Gardiner, D. A. Collings, J. D. Harper, and J. Marc, The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis, Plant Cell Physiol. 44, 687– 696 (2003).
PubMed
CrossRef
CAS
Google Scholar
R. C. Moore and R. J. Cyr, Association between elongation factor-1alpha and microtubules in vivo is domain dependent and conditional, Cell Motil. Cytoskeleton 45, 279– 292 (2000).
PubMed
CrossRef
CAS
Google Scholar
S. D. Chuong, R. T. Mullen, and D. G. Muench, The peroxisomal multifunctional protein interacts with cortical microtubules in plant cells, BMC Cell Biol. 6, 40 (2005).
PubMed
CrossRef
Google Scholar
H. Buschmann, J. Chan, L. Sanchez-Pulido, M. A. Andrade-Navarro, J. H. Doonan, and C. W. Lloyd, Microtubule-associated AIR9 recognizes the cortical division site at preprophase and cell-plate insertion, Curr. Biol. 16, 1938– 1943 (2006).
PubMed
CrossRef
CAS
Google Scholar
A. P. Smertenko, H. Y. Chang, S. Sonobe, S. I. Fenyk, M. Weingartner, L. Bogre, and P. J. Hussey, Control of the AtMAP65-1 interaction with microtubules through the cell cycle, J. Cell Sci. 119, 3227– 3237 (2006).
PubMed
CrossRef
CAS
Google Scholar
R.-P. Jansen, mRNA localization: message on the move, Nat. Rev. Mol. Cell. Biol. 2, 247 – 256 (2001).
PubMed
CrossRef
CAS
Google Scholar
Z. Elisha, L. Havin, I. Ringel, and J. K. Yisraei, Vg1 RNA binding protein mediates the association of Vg1 RNA with microtubules in Xenopus oocytes., EMBO J. 14, 5109 – 5114 (1995).
PubMed
CAS
Google Scholar
J. O. Deshler, M. I. Highett, T. Abramson, and B. Schnapp, A highly conserved RNA-binding protein for cytoplasmic mRNA localization in vertebrates, Curr. Biol. 8, 489 – 496 (1997).
CrossRef
Google Scholar
L. Wickham, T. Duchaîne, M. Luo, I. R. Nabi, and L. DesGroseillers, Mammalian staufen is a double-stranded-RNA and tubulin-binding protein which localizes to the rough endoplasmic reticulum, Mol. Cell Biol. 19, 2220 – 2230 (1999).
PubMed
CAS
Google Scholar
R.-P. Jansen, RNA-cytoskeletal associations, FASEB J 13, 455 – 466 (1999).
PubMed
CAS
Google Scholar
D. G. Muench and N. I. Park, Messages on the move: the role of the cytoskeleton in mRNA localization and translation in plant cells, Can. J. Bot. 84, 572 – 580 (2006).
CrossRef
CAS
Google Scholar
X. Li, V. R. Franceschi, and T. W. Okita, Segregation of storage protein mRNAs on the rough endoplasmic reticulum membranes of rice endosperm cells, Cell 72, 869 – 879 (1993).
PubMed
CrossRef
CAS
Google Scholar
D. G. Muench, Y. Wu, S. J. Coughlan, and T. W. Okita, Evidence for a cytoskeleton-associated binding site involved in prolamine mRNA localization to the protein bodies in rice endosperm tissue, Plant Physiol. 116, 559 – 569 (1998).
PubMed
CrossRef
CAS
Google Scholar
S. Hamada, K. Ishiyama, S. B. Choi, C. Wang, S. Singh, N. Kawai, V. R. Franceschi, and T. W. Okita, The transport of prolamine RNAs to prolamine protein bodies in living rice endosperm cells, Plant Cell 15, 2253 – 2264 (2003).
PubMed
CrossRef
CAS
Google Scholar
J. Lane and V. Allan, Microtubule-based membrane movement, Biochim. Biophys. Acta 1376, 27 – 55 (1998).
PubMed
CAS
Google Scholar
M. Wada and N. Suetsugu, Plant organelle positioning, Curr. Opin. Plant Biol. 7, 626 – 631 (2004).
PubMed
CrossRef
CAS
Google Scholar
C. R. Hawes and B. Satiat-Jeunemaitre, Trekking along the cytoskeleton, Plant Physiol. 125, 119 – 122 (2001).
PubMed
CrossRef
CAS
Google Scholar
K. Van Gestel, R. H. Kohler, and J. P. Verbelen, Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules, J. Exp. Bot. 53, 659 – 667 (2002).
PubMed
CrossRef
Google Scholar
P. Boevink, K. Oparka, S. Santa Cruz, B. Martin, A. Betteridge, and C. Hawes, Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network, Plant J. 15, 441 – 447 (1998).
PubMed
CrossRef
CAS
Google Scholar
D. G. Muench and R. T. Mullen, Peroxisome dynamics in plant cells: a role for the cytoskeleton, Plant Sci. 164, 307 – 315 (2003).
CrossRef
CAS
Google Scholar
A. Nebenfuhr, L. A. Gallagher, T. G. Dunahay, J. A. Frohlick, A. M. Mazurkiewicz, J. B. Meehl, and L. A. Staehelin, Stop-and-go movements of plant Golgi stacks are mediated by the acto- myosin system, Plant Physiol. 121, 1127 – 1142. (1999).
PubMed
CrossRef
CAS
Google Scholar
M. K. Kandasamy and R. B. Meagher, Actin-organelle interaction: association with chloroplast in arabidopsis leaf mesophyll cells, Cell Motil. Cytoskeleton 44, 110 – 118 (1999).
PubMed
CrossRef
CAS
Google Scholar
L. Lu, Y. R. Lee, R. Pan, J. N. Maloof, and B. Liu, An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis, Mol. Biol. Cell 16, 811 – 823 (2005).
PubMed
CrossRef
CAS
Google Scholar
E. Y. Kwok and M. R. Hanson, Microfilaments and microtubules control the morphology and movement of non-green plastids and stromules in Nicotiana tabacum, Plant J. 35, 16 – 26 (2003).
PubMed
CrossRef
Google Scholar
Y. Sato, M. Wada, and A. Kadota, Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor, J. Cell Sci. 114, 269 – 279 (2001).
PubMed
CAS
Google Scholar
I. Foissner, Microfilaments and microtubules control the shape, motility, and subcellular distribution of cortical mitochondria in characean internodal cells, Protoplasma 224, 145 – 157 (2004).
PubMed
CrossRef
CAS
Google Scholar
Y. R. Lee, H. M. Giang, and B. Liu, A novel plant kinesin-related protein specifically associates with the phragmoplast organelles, Plant Cell 13, 2427 – 2439 (2001).
PubMed
CrossRef
CAS
Google Scholar
S. L. Gupton, D. A. Collings, and N. S. Allen, Endoplasmic reticulum targeted GFP reveals ER organization in tobacco NT-1 cells during cell division, Plant Physiol. Biochem. 44, 95 – 105 (2006).
PubMed
CrossRef
CAS
Google Scholar
M. Garcia, X. Darzacq, T. Delaveau, L. Jourdren, R. H. Singer, and C. Jacq, Mitochondria-associated yeast mRNAs and the biogenesis of molecular complexes, Mol. Biol. Cell 18, 362 – 368 (2007).
PubMed
CrossRef
CAS
Google Scholar
S. Subramani, Hitchhiking fads en route to peroxisomes, J. Cell Biol. 156, 415 – 417. (2002).
PubMed
CrossRef
CAS
Google Scholar
J. D. I. Harper, N. D. Weerakoon, J. C. Gardiner, L. M. Blackman, and J. Marc, A 75-kDa plant protein isolated by tubulin-affinity chromatography is a peroxisomal matrix enzyme, Can. J. Bot. 80, 1018 – 1027 (2002).
CrossRef
CAS
Google Scholar
X. Liu, B. Reig, I. M. Nasrallah, and P. J. Stover, Human cytoplasmic serine hydroxymethyltransferase is an mRNA binding protein, Biochemistry 39, 11523 – 11531 (2000).
PubMed
CrossRef
CAS
Google Scholar
N. Tai, J. C. Schmitz, J. Liu, X. Lin, M. Bailly, T. M. Chen, and E. Chu, Translational autoregulation of thymidylate synthase and dihydrofolate reductase, Front Biosci. 9, 2521 – 2526 (2004).
PubMed
CrossRef
CAS
Google Scholar