Skip to main content

Microfossil Phosphatization and Its Astrobiological Implications

  • Chapter
Book cover From Fossils to Astrobiology

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 12))

One of the major tasks of astrobiology is to critically examine evidence of past or present ecosystems beyond our planet. As Earth is the only planet that is known to have hosted life, perhaps as early as 3.8–3.5 billion years ago (or Ga, Giga anna) as illustrated by biologically-meaningful carbon isotopic signatures and prokaryotic microfossils (Mojzsis et al., 1996; Schopf, 2006; but see van Zuilen et al., 2002; Brasier et al., 2006; Fedo et al., 2006), it provides the only model for us to learn how traces of life can be preserved and recognized. In this contribution, we focus on fossil preservation through phosphate mineralization and discuss its implications for the identification of possible life (particularly ancient life if it did exist) on other planets.

In this contribution, we ask the question how morphological evidence (as opposed to geochemical evidence) of microbial life – if it did exist – would be best preserved in extraterrestrial environments. We approach this question by briefly reviewing the taphonomic pathways in the Proterozoic (2.5–0.54 billion years ago) fossil record. This is followed by a more detailed analysis of three-dimensional phosphatization of non-biomineralizing microorganisms in the Neoproterozoic Doushantuo Formation. We focus on the phosphatization window of the Doushantuo Formation because it represents one of the most powerful taphonomic pathways through which soft-bodied microorganisms can be preserved. We then close our chapter by discussing the astrobiological relevance of phosphatization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, C.W., and Hilgert, J.W. (1986) Scale microfossils from the early Cambrian of northwest Canada, J. Paleontol. 60(5), 973–1015.

    Google Scholar 

  • Allison, P.A., and Briggs, D.E.G. (1993) Exceptional fossils record: Distribution of soft-tissue preservation through the Phanerozoic, Geology 21, 527–530.

    Article  ADS  Google Scholar 

  • Bailey, J.V., Joye, S.B., Kalanetra, K.M., Flood, B.E., and Corsetti, F.A. (2007) Evidence of giant sulphur bacteria in Neoproterozoic phosphorites, Nature 445, 198–201.

    Article  ADS  Google Scholar 

  • Bengtson, S. (1976) The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function, Lethaia 9, 185–206.

    Article  Google Scholar 

  • Bengtson, S. (1994) The advent of animal skeletons, In: S. Bengtson (ed.) Early Life on Earth. Columbia, New York, pp. 412–425.

    Google Scholar 

  • Bengtson, S., and Budd, G. (2004) Comment on “Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian”, Science 306, 1290a–1291a.

    Article  Google Scholar 

  • Bengtson, S., and Yue, Z. (1997) Fossilized metazoan embryos from the earliest Cambrian, Science 277, 1645–1648.

    Article  Google Scholar 

  • Brasier, M., McLoughlin, N., Green, O., and Wacey, D. (2006) A fresh look at the fossil evidence for early Archaean cellular life, Phil. Trans. Royal Soc. London B: Biol. Sci. 361, 887–902.

    Article  Google Scholar 

  • Briggs, D.E.G. (2003) The role of decay and mineralization in the preservation of soft-bodied fossils, Annu. Rev. Earth Planet. Sci. 31, 275–301 (doi: 10.1146/annurev.earth.31.100901.144746).

    Article  ADS  Google Scholar 

  • Briggs, D.E.G., Bottrell, S.H., and Raiswell, R. (1991) Pyritization of soft-bodied fossils: Beecher’s trilobite Bed, Upper Ordovician, New York State, Geology 19(12), 1221–1224.

    Article  ADS  Google Scholar 

  • Butterfield, N.J. (1995) Secular distribution of Burgess Shale-type preservation, Lethaia 28, 1–13.

    Article  Google Scholar 

  • Butterfield, N.J. (2003) Exceptional fossil preservation and the Cambrian Explosion, Integr. Comp. Biol. 43, 166–177.

    Article  Google Scholar 

  • Cai, Y., and Hua, H. (2007) Pyritization in the Gaojiashan biota, Chinese Sci. Bull. 52, 645–650.

    Article  Google Scholar 

  • Chen, J., Oliveri, P., Li, C.-w., Zhou, G.-q., Gao, F., Hagadorn, J.W., Peterson, K.J., and Davidson, E.H. (2000) Precambrian animal diversity: Putative phosphatized embryos from the Doushantuo Formation of China, Proc. Nat. Acad. Sci. USA 97(9), 4457–4462.

    Article  ADS  Google Scholar 

  • Chen, J.-Y., Bottjer, D.J., Oliveri, P., Dornbos, S.Q., Gao, F., Ruffins, S., Chi, H., Li, C.-W., and Davidson, E.H. (2004) Small bilaterian fossils from 40 to 55 million years before the Cambrian, Science 305, 218–222.

    Article  ADS  Google Scholar 

  • Conway Morris, S., and Chen, M. (1992) Carinachitiids, hexangulaconulariids, and Punctatus: Problematic metazoans from the early Cambrian of South China, J. Paleontol. 66(3), 384–406.

    Google Scholar 

  • Ding, L., Zhang, L., Li, Y., and Dong, J. (1992) The Study of the Late Sinian — Early Cambrian Biotas from the Northern Margin of the Yangtze Platform. Scientific and Technical Documents Publishing House, Beijing.

    Google Scholar 

  • Dong, X.-P., Donoghue, P.C.J., Cheng, H., and Liu, J.-B. (2004) Fossil embryos from the Middle and Late Cambrian period of Hunan, south China, Nature 427, 237–240.

    Article  ADS  Google Scholar 

  • Donoghue, P.C.J., Kouchinsky, A., Waloszek, D., Bengtson, S., Dong, X.-p., Val’kov, A.K., Cunningham, J.A., and Repetski, J.E. (2006) Fossilized embryos are widespread but the record is temporally and taxonomically biased, Evol. Dev. 8, 232–238.

    Article  Google Scholar 

  • Dornbos, S.Q., Bottjer, D.J., Chen, J.-Y., Oliveri, P., Gao, F., and Li, C.-W (2005) Precambrian animal life: Taphonomy of phosphatized metazoan embryos from southwest China, Lethaia 38, 101–109.

    Article  Google Scholar 

  • Dornbos, S.Q., Bottjer, D.X, Chen, J.Y., Gao, F., Oliveri, P., and Li, C.W. (2006) Environmental controls on the taphonomy of phosphatized animals and animal embryos from the Neoproterozoic Doushantuo Formation, southwest China, PALAIOS 21, 3–14.

    Article  Google Scholar 

  • Duncan, I.J., and Briggs, D.E.G. (1996) Three-dimensionally preserved insects, Nature 381, 30–31.

    Article  ADS  Google Scholar 

  • Duncan, I.J., Briggs, D.E.G., and Archer, M. (1998) Three-dimensionally mineralized insects and millipedes from the Tertiary of Riversleigh, Queensland, Australia, Palaeontology 41(5), 835–851.

    Google Scholar 

  • Efron, B. (1981) Nonparametric standard errors and confidence intervals, Can. J. Statistics 9, 139–172.

    Article  MATH  MathSciNet  Google Scholar 

  • Fedo, C.M., Whitehouse, M.J., and Kamber, B.S. (2006) Geological constraints on detecting the earliest life on Earth: Aperspective from the Early Archaean (older than 3.7Gyr) of southwest Greenland, Phil. Trans. Roy. Soc. Lond. B 361, 851–867.

    Article  Google Scholar 

  • Fedonkin, M.A., and Yochelson, E.L. (2002) Middle Proterozoic (1.5Ga) Horodyskia moniliformis Yochelson and Fedonkin, the oldest known tissue-grade colonial eucaryote, Smithsonian Contrib. Paleobiol. 94, 1–29.

    Google Scholar 

  • Folk, R.L. (1999) Nannobacteria and the precipitation of carbonate in unusual environments, Sediment. Geol. 126, 47–55.

    Article  ADS  Google Scholar 

  • Folk, R.L., and Rasbury, E.T. (2002) Nanometre-scale spheroids on sands, Vulcano, Sicily: Possible nannobacterial alteration, Terra Nova 14, 469–475.

    Article  Google Scholar 

  • Fralick, P., Davis, D.W., and Kissin, S.A. (2002) The age of the Gunflint Formation, Ontario, Canada: Single zircon U-Pb age determinations from reworked volcanic ash, Can. J. Earth Sci. 39, 1085–1091.

    Article  ADS  Google Scholar 

  • Gabbott, S.E., Hou, X.G., Norry, M.J., and Siveter, D.J. (2004) Preservation of early Cambrian animals of the Chengjiang biota, Geology 32, 901–904.

    Article  ADS  Google Scholar 

  • Gaines, R.R., Kennedy, M.J., and Droser, M.L. (2005) A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah, Palaeogeogr. Palaeoclimatol. Palaeoecol. 220(1–2), 193–205.

    Article  Google Scholar 

  • Gehling, J.G. (1999) Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks, PALAIOS 14, 40–57.

    Article  Google Scholar 

  • Grant, S.W.F. (1990) Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic, Am. J. Sci. 290-A, 261–294.

    Google Scholar 

  • Grimes, S.T., Davies, K.L., Butler, I.B., Brock, F., Edwards, D., Rickard, D., Briggs, D.E.G., and Parkes, R.J. (2002) Fossil plants from the Eocene London clay: The use of pyrite textures to determine the mechanism of pyritization, J. Geol. Soc. Lond. 159, 493–501.

    Article  Google Scholar 

  • Grotzinger, J.P., Watters, W.A., and Knoll, A.H. (2000) Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia, Paleobiology 26(3), 334–359.

    Article  Google Scholar 

  • Hagadorn, J.W., Fedo, C.M., and Waggoner, B.M. (2000) Early Cambrian Ediacaran-type fossils from California, J. Paleontol. 74(4), 731–740.

    Article  Google Scholar 

  • Hagadorn, J.W., Xiao, S., Donoghue, P.C.J., Bengtson, S., Gostling, N.J., Pawlowska, M., Raff, E.C., Raff, R.A., Turner, F.R., Yin, C., Zhou, C., Yuan, X., McFeely, M.B., Stampanoni, M., and Nealson, K.H. (2006) Cellular and subcellular structure of Neoproterozoic embryos, Science 314, 291–294.

    Article  ADS  Google Scholar 

  • Han, T.-M., and Runnegar, B. (1992) Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee Iron-Formation, Michigan, Science 257, 232–235.

    Article  ADS  Google Scholar 

  • Hua, H., Chen, Z., Yuan, X., Zhang, L., and Xiao, S. (2005) Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina, Geology 33(4), 277–280.

    Article  ADS  Google Scholar 

  • Jensen, S., Gehling, J.G., and Droser, M.L. (1998) Ediacara-type fossils in Cambrian sediments, Nature 393, 567–569.

    Article  ADS  Google Scholar 

  • Jones, B., Renaut, R.W, and Rosen, M.R. (1997) Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand, J. Sediment. Res., A: Sediment. Petrol. Process. 67(1), 88–104.

    Google Scholar 

  • Jones, B., Konhauser, K.O., Renaut, R., and Wheeler, R.S. (2004) Microbial silicification in Iodine Pool, Waimangu geothermal area, North Island, New Zealand: Implications for recognition and identification of ancient silicified microbes, J. Geol. Soc. Lond. 161, 983–993.

    Article  Google Scholar 

  • Jones, B., Renaut, R.W., and Rosen, M.R. (1997) Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand, Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes 67(1), 88–104.

    Google Scholar 

  • Knoll, A.H. (1985) Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats, Phil. Trans. Royal Soc. Lond. B 311, 111–122.

    Article  ADS  Google Scholar 

  • Knoll, A.H. (2003) Biomineralization and evolutionary history, Rev. Mineral. Geochem. 54, 329–356.

    Article  Google Scholar 

  • Kowalewski, M., Goodfriend, G.A., and Flessa, K.W. (1998) High resolution estimates of temporal mixing within shell beds: The evils and virtues of time-averaging, Paleobiology 24, 287–304.

    Google Scholar 

  • Liu, P., Xiao, S., Yin, C., Zhou, C., Gao, L., and Tang, F. (2008) Systematic description and phylogenetic affinity of tubular microfossils from the Ediacaran Doushantuo Formation at Weng’an, South China, Palaeontology 51, 339–366.

    Article  Google Scholar 

  • Maliva, R.G., Knoll, A.H., and Siever, R. (1989) Secular change in chert distribution: A reflection of evolving biological participation in the silica cycle, PALAIOS 4, 519–532.

    Article  Google Scholar 

  • Maliva, R.G., Knoll, A.H., and Simonson, B.M. (2005) Secular change in the Precambrian silica cycle: Insights from chert petrology, GSA Bull. 117(7), 835–845.

    Article  Google Scholar 

  • Martill, D.M., and Wilby, P.R. (1994) Lithified prokaryotes associated with fossil soft tissues from the Santana Formation (Cretaceous) of Brazil, Kaupia, Darmstaedter Beitraeger zur Naturgeschichte 4, 71–77.

    Google Scholar 

  • Martin, D., Briggs, D.E.G., and Parkes, R.J. (2003) Experimental mineralization of invertebrate eggs and the preservation of Neoproterozoic embryos, Geology 31(1), 39–42.

    Article  ADS  Google Scholar 

  • Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., and Friend, C.R.L. (1996) Evidence for life on Earth by 3800 million years ago, Nature 384, 55–59.

    Article  ADS  Google Scholar 

  • Müller, K.J. (1985) Exceptional preservation in calcareous nodules, Phil. Trans. Roy. Soc. Lond. B 311, 67–73.

    ADS  Google Scholar 

  • Müller, K.J., and Hinz-Schallreuter, I. (1993) Palaeoscolecid worms from the Middle Cambrian of Australia, Palaeontology 36(3), 549–592.

    Google Scholar 

  • Narbonne, G.M. (2005) The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems, Annu. Rev. Earth Planet. Sci. 33, 421–442.

    Article  ADS  Google Scholar 

  • Nealson, K.H. (1997) Nannobacteria: Size limits and evidence, Science 276, 1776.

    Google Scholar 

  • Nisbet, E.G., and Sleep, N.H. (2001) The habitat and nature of early life, Nature 409, 1083–1091.

    Article  ADS  Google Scholar 

  • Orr, P.J., Briggs, D.E.G., and Kearns, S.L. (1998) Cambrian Burgess Shale animals replicated in clay minerals, Science 281, 1173–1175.

    Article  ADS  Google Scholar 

  • Orr, P.J., Benton, M.J., and Briggs, D.E.G. (2003) Post-Cambrian closure of the deep-water slopebasin taphonomic window, Geology 31, 769–772.

    Article  ADS  Google Scholar 

  • Perri, E., and Tucker, M. (2007) Bacterial fossils and microbial dolomite in Triassic stromatolites, Geology 35, 207–210.

    Article  ADS  Google Scholar 

  • Porter, S.M., and Knoll, A.H. (2000) Testate amoebae in the Neoproterozoic era: Evidence from vaseshaped microfossils in the Chuar Group, Grand Canyon, Paleobiology 26(3), 360–385.

    Article  Google Scholar 

  • Raff, E.C., Vilinski, J.T., Turner, F.R., Donoghue, P.C.J., and Raff, R.A. (2006) Experimental taphonomy shows the feasibility of fossil embryos, Proc. Natl. Acad. Sci. USA 103, 5846–5851.

    Article  ADS  Google Scholar 

  • Renaut, R.W., Jones, B., and Tiercelin, J.J. (1998) Rapid in situ silicification of microbes at Loburu hot springs, Lake Bogoria, Kenya Rift Valley, Sedimentology 45, 1083–1103.

    Article  ADS  Google Scholar 

  • Rickard, D., Grimes, S., Butler, I., Oldroyd, A., and Davies, K.L. (2007) Botanical constraints on pyrite formation, Chem. Geol. 236, 228–246.

    Article  Google Scholar 

  • Schneider, D.A., Bickford, M.E., Cannon, W.F., Schulz, K.J., and Hamilton, M.A. (2002) Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: Implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region, Can. J. Earth Sci. 39(6), 999–1012.

    Article  ADS  Google Scholar 

  • Schopf, J.W. (1968) Microflora of the Bitter Springs Formation, Late Precambrian, central Australia, J. Paleontol. 42, 651–688.

    Google Scholar 

  • Schopf, J.W. (2006) Fossil evidence of Archaean life, Phil. Trans. Roy. Soc. Lond. B 361, 869–885.

    Google Scholar 

  • Southam, G., and Donald, R. (1999) A structural comparison of bacterial microfossils vs. “nanobacteria” and nanofossils, Earth Sci. Rev. 48, 251–264.

    Article  ADS  Google Scholar 

  • van Zuilen, M.A., Lepland, A., and Arrhenius, G. (2002) Reassessing the evidence for the earliest traces of life, Nature 418, 627–630.

    Article  ADS  Google Scholar 

  • Walossek, D. (2003) The “Orsten” window — a three-dimensionally preserved upper Cambrian meiofauna and its contribution to our understanding of the evolution of Arthropoda, Paleontol. Res. 7, 71–88.

    Article  Google Scholar 

  • Wood, R.A., Grotzinger, J.P., and Dickson, J.A.D. (2002) Proterozoic modular biomineralized metazoan from the Nama Group, Namibia, Science 296, 2383–2386.

    Article  ADS  Google Scholar 

  • Xiao, S. (2004) New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic, Yangtze Gorges, South China), J. Paleontol. 78(2), 393–401.

    Article  Google Scholar 

  • Xiao, S., and Knoll, A.H. (1999) Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China, Lethaia 32, 219–240.

    Article  Google Scholar 

  • Xiao, S., and Knoll, A.H. (2000) Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng’an, Guizhou, South China, J. Paleontol. 74(5), 767–788.

    Article  Google Scholar 

  • Xiao, S., Zhang, Y., and Knoll, A.H. (1998) Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature 391, 553–558.

    Article  ADS  Google Scholar 

  • Xiao, S., Yuan, X., and Knoll, A.H. (2000) Eumetazoan fossils in terminal Proterozoic phosphorites?, Proc. Nat. Acad. Sci. USA 97(25), 13684–13689.

    Article  ADS  Google Scholar 

  • Xiao, S., Knoll, A.H., Yuan, X., and Pueschel, C.M. (2004) Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae, Am. J. Bot. 91, 214–227.

    Article  Google Scholar 

  • Xiao, S., Shen, B., Zhou, C., Xie, G., and Yuan, X. (2005) A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan, Proc. Nat. Acad. Sci. USA 102, 10227–10232.

    Article  ADS  Google Scholar 

  • Xiao, S., Yuan, X., Steiner, M., and Knoll, A.H. (2002) Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China, J. Paleontol. 76(2), 345–374.

    Article  Google Scholar 

  • Xiao, S., Zhou, C., and Yuan, X. (2007) Undressing and redressing Ediacaran embryos, Nature 446, E9–10.

    Article  ADS  Google Scholar 

  • Yuan, X., Xiao, S., Li, J., Yin, L., and Cao, R. (2001) Pyritized chuarids with excystment structures from the late Neoproterozoic Lantian Formation in Anhui, South China, Precambr. Res. 107(3–4), 251–261.

    Google Scholar 

  • Yue, Z., and Bengtson, S. (1999) Embryonic and post-embryonic development of the Early Cambrian cnidarian Olivooides, Lethaia 32, 181–195.

    Google Scholar 

  • Zhang, W., and Babcock, L.E. (2001) New extraordinarily preserved enigmatic fossils, possibly with Ediacaran affinities, from the Lower Cambrian of Yunnan, China, Acta Palaeontol. Sinica 40(supplement), 210–213.

    Google Scholar 

  • Zhang, X., and Pratt, B.R. (1994) Middle Cambrian arthropod embryos with blastomeres, Science 266, 637–639.

    Article  ADS  Google Scholar 

  • Zhang, Y., Yin, L., Xiao, S., and Knoll, A.H. (1998) Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China, J. Paleontol. 72(4), l–52 (supplement).

    Google Scholar 

  • Zhu, M., Babcock, L.E., and Steiner, M. (2005) Fossilization modes in the Chengjiang Lagerstätte (Cambrian of China): Testing the roles of organic preservation and diagenetic alteration in exceptional preservation, Palaeogeogr., Palaeoclimatol., Palaeoecol. 220(1–2), 31–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhai Xiao or James D. Schiffbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Xiao, S., Schiffbauer, J.D. (2009). Microfossil Phosphatization and Its Astrobiological Implications. In: Seckbach, J., Walsh, M. (eds) From Fossils to Astrobiology. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8837-7_5

Download citation

Publish with us

Policies and ethics