Skip to main content

Models for Silicate Fossils of Organic Materials in the Astrobiological Context

  • Chapter
From Fossils to Astrobiology

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 12))

  • 1537 Accesses

Abstract

Silicates are abundant on both Earth and Mars, and hold great potential for harboring biosignatures. Biosignatures are signs of past or present life and may be either organic or inorganic in nature. Our most recent work, which we review here, is a survey of how different classes of organic compounds interact with highly basic sodium silicate solution to model the formation of biosignatures in nature. Our work focuses on using IR (infra-red) spectroscopy as a way to determine the mechanisms by which organics are preserved within silicates. Throughout the chapter, we cite relevant studies by others, while still maintaining the focus on the review of our own work. We ultimately summarize how various classes of organics interact with sodium silicate in terms of both physical and spectral properties and describe their astrobiological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Azrak, R. G. and Angell, C. L. (1973) Study of alcohol-silica surface reactions via infrared spectroscopy. J. Phys. Chem. 77, 3048–3052.

    Article  Google Scholar 

  • Bellamy, L. J. (1975) The Infrared Spectra of Complex Molecules, Vol. I, Third Edition. Chapman and Hall, London, England, pp. 374–385.

    Google Scholar 

  • Benning, L. G., Phoenix, V. G., Yee, N. and Kornhauser, K. O. (2004).The dynamics of cyanobacterial silicification: An infrared micro-spectroscopic investigation. Geochim. Cosmochim. Acta 68, 743–757.

    Article  ADS  Google Scholar 

  • Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K. and Garrel, L. (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414, 879–883.

    Article  ADS  Google Scholar 

  • Coradin, T. and Livage, J. (2001) Effect of some amino acids and peptides on silicic acid polymerization. Colloid Surface B 21, 329–336.

    Google Scholar 

  • Coradin, T., Durupthy, O. and Livage, J. (2002) Interaction of amino-containing peptides with sodium silicate and colloidal silica: A biomimetric approach of silicification. Langmuir 18, 2331–2336.

    Article  Google Scholar 

  • Cronin, J. R. (1998) Clues from the origin of the solar system: Meteorites. In: A. Brack (ed.) Molecular Origins of Life. Cambridge University Press, Cambridge, England, pp. 119–146.

    Google Scholar 

  • Cronin, J. R. and Chang, S. (1993) Organic Matter in Meteorites: Molecular and Isotopic Analysis of the Murchison Meteorite. In: J. M. Greenberg, C. X. Mendoza-Gomez and V. Pirronello (eds.) The Chemistry of Life’s Origins., Kluwer, Dordrecht, The Netherlands, pp. 209–258.

    Google Scholar 

  • Cronin, J. R., Cooper, G. W. and S. Pizzarello, S. (1995) Characteristics and formation of amino acids and hydroxyl acids of the Murchison meteorite. Adv. Space Res. 15, 91–97.

    Article  Google Scholar 

  • Delak, K. M. and Sahai, N. (2005) Amine-catalyzed biomimetics hydrolysis and condensation of organosilicate. Chem. Mater. 17, 3221–3227.

    Article  Google Scholar 

  • Delak, K. M. and Sahai, N. (2006) Mechanisms of amine-catalyzed organosilicate hydrolysis at circumneutral pH. J. Phys. Chem. B 110, 17819–17829.

    Google Scholar 

  • Hino, M. and Sato, T. (1971) Infrared absorption spectra of silica gel-water, water-d2, and water-18O systems. Bull. Chem. Soc. Jpn. 44, 33–37.

    Article  Google Scholar 

  • Her, R. K. (1979) The Chemistry of Silica, Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley, New York, pp. 150–157, 174–177, 239, 288–304, 730, 761–766.

    Google Scholar 

  • Kastele, X., Klufers, P., Kopp, F., Schuhmacher, J. and Vogt, M. (2005) Silicon chelation in aqueous and nonaqueous media: The furanoidic diol approach. Chem-Eur. J. 11, 6326–6346.

    Article  Google Scholar 

  • Kolb, V. M. and Liesch, P. J. (2006) Role of amino acids and their Maillard mixtures with ribose in the biosilicification process. In: R. B. Hoover, G. Y. Levin and A. Y. Rozanov (eds.) Instruments, Methods, and Missions for Astrobiology IX. SPIE, 6309, pp. 63090T 1–8.

    Google Scholar 

  • Kolb, V. M. and Liesch, P. J. (2007) Role of Organic Silicates in the Biomineralization Process. In: R. A. Yingst, S. D. Brandt, M. Rudd, and N. Kaltcheva (eds.) Internalization of Space, Proceedings of the 17th Annual Wisconsin Space Conference, Wisconsin Space Grant Consortium Publ., Part Seven (Chemistry), pp. 1–5, Green Bay, WI, 2007.

    Google Scholar 

  • Kolb, V. M., Philip, A. I. and Perry, R. S. (2004) Testing the role of silicic acid and bioorganic materials in the formation of rock coatings. In: R. B. Hoover, G. L. Levin and A. Y. Rozanov (eds.) Instruments, Methods, and Missions for Astrobiology VIII. SPIE, 5555, pp. 116–125.

    Google Scholar 

  • Kolb, V. M., Bajagic, M., Zhu, W. and Cody, C. D. (2005) Prebiotic Significance of the Maillard Reaction. In: R. B. Hoover, G. V. Levin, A. Y. Rozanov and G. R. Gladstone (eds.) Astrobiology and Planetary Missions. SPIE, 5906, pp. 59060T 1–11.

    Google Scholar 

  • Kolb, V. M., Bajagic, M., Liesch, P. J., Philip, A. and Cody, G. D. (2006) On the Maillard reaction of meteoritic amino acids. In: R. B. Hoover, G. Y. Levin and A. Y. Rozanov (eds.) Instruments, Methods, and Missions for Astrobiology IX. SPIE, 6309, pp. 63090B 1–13 and the references cited therein.

    Google Scholar 

  • Kubicki, J. D. and Heaney, P. J. (2002) Structures of Si-Carbohydrate Aqueous Complexes: Comparison of NMR Spectra and Molecular Orbital Results. American Geophysical Union, Fall Meeting 2002, abstract #B11A-0700.

    Google Scholar 

  • Lambert, J. B., Lu, G., Singer, S. R. and Kolb, V. M. (2004) Silicate complexes of sugars in aqueous solution. J. Am. Chem. Soc. 126, 9611–9625.

    Article  Google Scholar 

  • Lehninger, A. L., Nelson, D. L. and Cox, M. M. (2004) Principles of Biochemistry, Fourth Edition. W. H. Freeman, New York, pp. 76–81, 251–261.

    Google Scholar 

  • Liesch, P. J. and Kolb, V. M. (2007a) Importance of the interaction between sodium silicate and organic materials to astrobiology: Alcohol-based organo-silicates as potential biosignatures. In: R. B. Hoover, G. Y. Levin, A. Y. Rozanov and P. C. W. Davies (eds.) Instruments, Methods, and Missions for Astrobiology X. SPIE, 6694, pp. 669405 1–10.

    Google Scholar 

  • Liesch, P. J. and Kolb, V. M. (2007b) The importance of the Maillard-metal complexes and their silicates in astrobiology. In: R. B. Hoover, G. Y. Levin, A. Y. Rozanov and P. C. W. Davies (eds.) Instruments, Methods, and Missions for Astrobiology X. SPIE, 6694, pp. 66941G 1–8.

    Google Scholar 

  • Liesch, P. J. and Kolb, V. M. (2007c) Living strategies of unusual life forms on Earth and the relevance to astrobiology. In: R. B. Hoover, G. Y. Levin, A. Y. Rozanov and P. C. W. Davies (eds.) Instruments, Methods, and Missions for Astrobiology X. SPIE, 6694, pp. 66941F 1–9.

    Google Scholar 

  • Lodish, H., Berk, A, Matsudaria, P., Kaiser, C. A., Krieger, M., Scott, M. P., Zipursky, S. L. and Darnell. J. (2004) Molecular Cell Biology, Fifth Edition. W. H. Freeman, New York, pp. 59–86, 301–315.

    Google Scholar 

  • Mann, S. (2001) Biomineralization. Oxford University Press, Oxford, pp. 13–15, 106–108, 134–136, 168, 176.

    Google Scholar 

  • Morison, D. (2001) The NASA astrobiology program. Astrobiology 1, 3–13.

    Article  ADS  Google Scholar 

  • NASA (2007a) Astrobiology Roadmap, Goal 7, http://astrobiology.arc.nasa.gov/roadmap/g7.html, Final version, September 2003, site visited December 12, 2007.

  • NASA (2007b) Jet Propulsion Laboratory News Releases May 21, 2007, http://www.jpl.nasa.gov/ news/news.cfm?release = 2007-061, site visited December 12, 2007.

  • National Academies Report (2007) Committee on an astrobiology strategy for the exploration of Mars. An Astrobiology Strategy for the Exploration of Mars. The National Academies Press, Washington, DC, pp. 3, 4, 51, 58, 118.

    Google Scholar 

  • Perry, R. S. and Kolb, V. M. (2004) From Darwin to Mars: Desert varnish as a model for preservation of complex (bio) chemical systems. In: R. B. Hoover and A. Y. Rozanov (eds.) Instruments, Methods, and Missions to Astrobiology VII. SPIE, 5163, pp. 136–144.

    Google Scholar 

  • Perry, C. C., Belton, D. and Shafran, K. (2003) Studies in biosilicas; structural aspects, chemical principles, model studies, and the future. In: W. E. G. Müller (ed.) Silicon Biomineralization. Springer, New York, pp. 269–299.

    Google Scholar 

  • Perry, R. S., Kolb, V. M., Philip, A. I., Lynne, B. Y., McLoughlin, N., Sephton, M., Wacey, D. and Green, O. R. (2005) Making silica rock coatings in the lab: synthetic desert varnish. In: R. B. Hoover, G. V. Levin, A. Y. Rozanov and G. R. Gladstone (eds.) Astrobiology and Planetary Missions, SPIE 5906, pp. 5906U 1–11.

    Google Scholar 

  • Perry, R. S., Lynne, B. Y., Sephton, M. A., Kolb, V. M., Perry, C. C. and Staley, J. T. (2006) Baking black opal in the desert sun: The importance of silica in desert varnish. Geology 34, 537–540.

    Article  ADS  Google Scholar 

  • Pizzarello, S. and Cronin, J. R. (2000) Non-racemic amino acids in the Murray and Murchison meteorites. Geochim. Cosmochim. Acta, 64, 329–338.

    Article  ADS  Google Scholar 

  • Pohnert, G. (2002) Biomineralization of diatoms mediated through peptideand polyamine-assisted condensation of silica. Angew. Chem. Int. Ed. 41, 3167–3169.

    Article  Google Scholar 

  • Samadi-Maybodi, A., Harris, R. K., Azizi, S. N. and Kenwright, A. M. (2001) Silicon-29 NMR study of the formation of monomethoxysilicic acid in methanolic alkaline silicate solutions. Magn. Reson. Chem. 39, 443–446.

    Article  Google Scholar 

  • Samba-Fouala, C., Mossoyan, J.-C., Mossoyan-Déneux, M., Benlian, D., Chanéac, C. and Babonneau, F. (2000) Preparation and properties of silica hybrid gels containing phytic acid. J. Mater. Chem. 10, 387–393.

    Article  Google Scholar 

  • Sullivan, C. W. (1986) Silicification by diatoms. In: D. Evered and M. O’Connor (eds.) Silicon Biochemistry. Wiley, Chichester, England (Ciba Foundation Symposium 121), pp. 59–89.

    Google Scholar 

  • Sweryda-Krawiec, B., Cassagneau, T. and Fendler, J. H. (1999) Surface modification of silicon nanocrystallites by alcohols. J. Phys. Chem. B 103, 9524–9529.

    Google Scholar 

  • Trusovs, S. (2006) Metal complexes produced by Maillard reaction products, US Patent 10605987, January 31, 2006.

    Google Scholar 

  • Vrieling, E. G., Hazelaar, S., Gieskes, W. W. C., Sun, Q., Beelen, T. P. M. and van Santen, R. A. (2003) Silicon biomineralization: Towards mimicking biogenic silica formation in diatoms. In: W. E. G. Müller (ed.) Silicon Biomineralization. Springer, New York, pp. 301–334.

    Google Scholar 

  • Weissbach, A. and Sprinson, D. B. (1952) The metabolism of 2-Carbon compounds related to glycine. J. Biol. Chem. 203, 1031–1037.

    Google Scholar 

  • Williams, R. J. P. (1986) Introduction to silicon chemistry and biochemistry. In: D. Evered and M. O’Connor (eds.) Silicon Biochemistry. Wiley, Chichester, England (Ciba Foundation Symposium 121), pp. 24–39.

    Google Scholar 

  • Zubay, Z. (2000) Origins of Life on the Earth and in the Cosmos, Second Edition. Academic, San Diego, pp. 283–308, 380–381, 390–392.

    Book  Google Scholar 

  • Zwitter definition, dict.cc, English-German Dictionary, http://www.dict.cc/german-english/Zwitter. html, copyright 2003–2007, site visited December 12, 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vera M. Kolb or Patrick J. Liesch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Kolb, V.M., Liesch, P.J. (2009). Models for Silicate Fossils of Organic Materials in the Astrobiological Context. In: Seckbach, J., Walsh, M. (eds) From Fossils to Astrobiology. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8837-7_4

Download citation

Publish with us

Policies and ethics