Skip to main content

Looking Through Windows onto the Earliest History of Life on Earth and Mars

  • Chapter
From Fossils to Astrobiology

Abstract

We know that planet Earth is about 4.5 billion years old but what is less clear is when it first became home to life. Locating the first evidence for life on Earth is a question of considerable complexity and controversy. Biogeochemical signals or examples of cellular preservation from the early Archean (greater than ~3 billion years in age) are scarce and vigorously debated. Understanding the relationship between a specific signature in the terrestrial rock record and a specific organism and/or environment is a key issue that astrobiologists must address in order to succeed in any search for life, extinct or extant, on other planets. We here present an overview of putative biogenic signals described from some of Earth’s oldest rocks and highlight the most promising areas for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allwood A.C., Walter M.R., Kamber B.S., Marshal C.P. and Burch I.W. (2006). Stromatolite reef from the Early Archean era of Australia. Nature 441, 714–718.

    Article  ADS  Google Scholar 

  • Allwood, A.C., Walter, M.R., Burch, I.R. and Kamber, B.S. (2007). 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precamb. Res. 158, 198–227.

    Article  Google Scholar 

  • Anbar, A.D. (2004). Iron stable isotopes: beyond biosignatures. Earth Planet. Sci. Lett. 217, 223–236.

    Article  ADS  Google Scholar 

  • Armstrong, R.A., Compston, W., de Wit, M.J. and Williams, L.S. (1990). The stratigraphy of the 3.5–3.2Ga Barberton Greenstone Belt revisited: a single zircon ion microprobe study. Earth Planet. Sci. Lett. 101, 90–106.

    Article  ADS  Google Scholar 

  • Anhaeusser, C.R. (1973). The evolution of the early Precambrian crust of South Africa. Phil. Trans. Roy. Soc. Lond. A273, 359–388.

    Article  ADS  Google Scholar 

  • Awramik, S.M. (1992). The oldest records of photosynthesis. Photosynth. Res. 33, 75–89.

    Article  Google Scholar 

  • Awramik, S.M., Schopf, J.W. and Walter M.R. (1983). Filamentous fossil bacteria from the Archaean of Western Australia. Precamb. Res. 20, 357–374.

    Article  Google Scholar 

  • Banerjee, N.R., Furnes, H., Muehlenbachs, K., Staudigel, H. and de Wit, M. (2006). Preservation of ∼3.4–3.5Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa. Earth Planet. Sci. Lett. 241, 707–722.

    Article  ADS  Google Scholar 

  • Banerjee, N.R., Simonetti, A., Furnes, H., Muehlenbachs, K., Staudigel H., Heaman, L., Van Kranendonk, M.J. (2007). Direct dating of Archean microbial ichnofossils. Geology 35, 487–490.

    Article  ADS  Google Scholar 

  • Beaumont V. and Robert F. (1999). Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry. Precamb. Res. 96, 63–82.

    Article  Google Scholar 

  • Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., van Kranendonk, M.J., Lindsay, J.F., Steele, A. and Grassineau, N.V. (2002). Questioning the evidence for Earth’s oldest fossils. Nature 416, 76–81.

    Article  ADS  Google Scholar 

  • Brasier, M.D., Green, O.R., Lindsay, J.F., McLoughlin, N., Jephcoat, A.P., Kleppe, A.K., Steele, A. and Stoakes. C.P. (2005). Critical testing of Earth’s oldest putative fossil assemblage from the -3.5Ga Apex chert, Chinaman Creek, Western Australia. Precamb. Res. 140, 55–102.

    Article  Google Scholar 

  • Brasier, M.D., McLoughlin, N and Wacey, D. (2006). A fresh look at the fossil evidence for early Archaean cellular life. Phil. Trans. Roy. Soc. B 361, 887–902.

    Google Scholar 

  • Buick, R. (1984). Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in Archaean stromatolites? Precamb. Res. 24, 157–172.

    Article  ADS  Google Scholar 

  • Buick, R. (1990). Microfossil recognition in Archaean rocks: an appraisal of spheroids and filaments from a 3500 MY old chert-barite unit at North Pole, Western Australia. PALAIOS 5, 441–459.

    Article  Google Scholar 

  • Buick R., Dunlop, J.S.R. and Groves D.I. (1981). Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archean chert-barite unit at North Pole, Western Australia. Alcheringa 5, 161–181.

    Article  Google Scholar 

  • Catling, D.C., Zahnle, K.J. and McKay, C.P. (2001). Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843.

    Article  ADS  Google Scholar 

  • Dauphas, N., van Zuilen, M., Wadhwa, M., Davis, A.M., Marty, B. and Janney, P.E. (2004). Clues from Fe isotope variations on the origins of early Archean BIFs from Greenland. Science 306, 2077–2080.

    Article  ADS  Google Scholar 

  • Dauphas, N., van Zuilen, M., Busigny, V., Lepland, A., Wadhwa, M., Janney, P.E. (2007). Iron isotope, major and trace element characterization of early Archean supracrustal rocks from SW Greenland: protolith identification and metamorphic overprint. Geochim. Cosmochim. Acta 71, 4745–4770.

    Article  ADS  Google Scholar 

  • Dunlop, J.S.R., Muir, M.D., Milne, V.A. and Groves, D.I. (1978). A new microfossil assemblage from the Archaean of Western Australia. Nature 274, 676–678.

    Article  ADS  Google Scholar 

  • Eiler, J.M. (2007). The oldest fossil or just another rock? Science 317, 1046–1047.

    Article  Google Scholar 

  • Engel, A.E.J., Nagy, B., Nagy, L.A., Engel, C.G., Kremp, G.O.W. and Drew, C.M. (1968). Algal-like forms in Onverwacht Series, South Africa: oldest recognised lifelike forms on Earth. Science 161, 1005–1008.

    Article  ADS  Google Scholar 

  • Fedo, C.M. and Whitehouse, M.J. (2002). Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and its Implications for Earth’s earliest life. Science 296, 1448–1452.

    Article  ADS  Google Scholar 

  • Fisk, M.R. and Giovannoni, S.J. (1999). Sources of nutrients and energy for a deep biosphere on Mars. J. Geophys. Res. 104, 11805–11815.

    Article  ADS  Google Scholar 

  • Fisk, M.R., Popa, R., Mason, O.U., Storrie-Lombardi, M.C. and Vicenzi, E.P. (2006). Ironmagnesium silicate bioweathering on Earth (and Mars?). Astrobiology 6, 48–68.

    Article  ADS  Google Scholar 

  • Friedmann, E.I. and Koriem, A.M. (1989). Life on Mars: how it disappeared (if it was ever there). Adv. Space Res. 9, 167–172.

    Article  ADS  Google Scholar 

  • Furnes, H., Banerjee, N.R., Muehlenbachs, K., Staudigel, H. and de Wit, M. (2004). Early Life recorded in Archean pillow lavas. Science 304, 578–581.

    Article  ADS  Google Scholar 

  • Furnes, H., Banerjee, N.R., Staudigel, H., Muehlenbachs, K., McLoughlin, N., de Wit, M. and Van Kranendonk, M. (2007). Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: tracing subsurface life in oceanic igneous rocks. Precamb. Res. 158, 156–176.

    Article  Google Scholar 

  • Garcia-Ruiz, J.M., Hyde, S.T., Carnerup, A.M., Christy, A.G., Van Kranendonk, M.J. and Welham, N.J. (2003). Self-assembled silica carbonate structures and detection of ancient microfossils. Science 302, 1194–1197.

    Article  ADS  Google Scholar 

  • Gibson Jr., E.K., Clemett, S.J., Thomas-Keprta, K.L., McKay, D.S., Wentworth, S.J., Robert, F., Verchovsky, Wright, I.P., A.B., Pillinger, C.T., Rice, T. and Van Leer, B. (2006). Observation and analysis of in situ carbonaceous matter in Nakhla: Part II. Lunar Planet. Sci. XXXVII, 2039p.

    Google Scholar 

  • Goodwin, A.M., Monster, J. and Thode, H.G. (1976). Carbon and sulphur abundances in Archean iron-formations and early Precambrian life. Econ. Geol. Bull. Soc. Econ. Geol. 71, 870–891.

    Article  Google Scholar 

  • Grady, M.M. and Wright, I. (2006). The carbon cycle on early Earth — and on Mars?. Phil. Trans. Roy. Soc. B, 361, 1703–1713.

    Article  Google Scholar 

  • Grassineau, N.V., Nisbet, E.G., Bickle, M.J., Fowler, C.M.R., Lowry, D., Mattey, D.P., Abell, P. and Martin, A. (2001). Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million-year old rock of the Belingwe Belt, Zimbabwe. Proc. Roy. Soc. Lond. B 268, 113–119.

    Article  Google Scholar 

  • Grotzinger, J.P. and Rothman, D.H. (1996). An abiotic model for stromatolite morphogenesis. Nature 383, 423–425.

    Article  ADS  Google Scholar 

  • Hayes, J.M., Kaplan, I.R. and Wediking, W. (1983). Precambrian Organic Geochemistry, Preservation of the Record In J.W. Schopf. (ed.), Earth’s Earliest Biosphere, Its Origin and Evolution, Princeton University Press, Princeton, NJ, pp. 93–134.

    Google Scholar 

  • Hedges, S.B., Chen, H., Kumar, S., Wang, D., Thompson, A.S. and Watanabe, H. (2001). A genomic timescale for the origin of eukaryotes. BMC Evol. Bio. 1, 4.

    Article  Google Scholar 

  • Hofmann, A. and Bolhar, R. (2007). Carbonaceous cherts in the Barberton greenstone belt and their significance for the study of early life in the archean record. Astrobiology 7, 355–388.

    Article  ADS  Google Scholar 

  • Hofmann, H.J., Grey, K., Hickman, A.H. and Thorpe, R.I. (1999). Origin of 3.45 Ga coniform stromatolites in the Warrawoona Group, Western Australia. Bull. Geol. Soc. Am. 111, 1256–1262.

    Article  Google Scholar 

  • Hoover, R.B., Jerman, G., Rozanov, A.Y. and Sipiera, P.P. (2004). Indigenous microfossils in carbonaceous meteorites. In R.B. Hoover, G.V. Levin and A.Y. Rozanov (eds.) Proceedings of SPIE Volume 5555: Instruments, Methods, and Missions for Astrobiology VIII, ISBN 0-8194-5493-1.

    Google Scholar 

  • Horita, J. and Berndt, M.E. (1999). Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057.

    Article  Google Scholar 

  • Johnson, C. M. and Beard, B. L. (2006). Fe isotopes: an emerging technique for understanding modern and ancient biogeochemical cycles. GSA Today 16, 4–10.

    Article  Google Scholar 

  • Jull, A.J.T., Courtney, C., Jeffrey, D.A. and Beck, J.W. (1998). Isotopic evidence for a terrestrial source of organic compounds found in Martian meteorites Allan Hills 84001 and Elephant Moraine 79001. Science 279, 366–369.

    Article  ADS  Google Scholar 

  • Kamber, B.S., Moorbath, S. and Whitehouse, M.J. (2001). The oldest rocks on Earth: time constraints and geological controversies. In C.L.E. Lewis and S.J. Knell (eds.) The Age of the Earth from 4004 BC to AD 2002. Geological Society, London, Special Publication, Vol. 290, pp. 177–203.

    Google Scholar 

  • Kasting, J. (2006). Earth Sciences: ups and downs of ancient oxygen. Nature 443, 643–645.

    Article  ADS  Google Scholar 

  • Knauth, L.P. and Lowe, D.R. (2003). High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5Ga Swaziland Supergroup, South Africa. Bull. Geol. Soc. Am. 115, 566–580.

    Article  Google Scholar 

  • Knoll, A.H. (1994). Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo. Proc. Nat. Acad. Sci. USA 91, 6743–6750.

    Article  ADS  Google Scholar 

  • Knoll, A.H. (2003). Life on a young planet: the first three billion years of evolution on Earth. Princeton University Press, Princeton, NJ, 277p.

    Google Scholar 

  • Knoll, A.H. and Barghoorn, E.S. (1974). Ambient pyrite in Precambrian chert: new evidence and a theory. PNAS 71, 2329–2331.

    Article  ADS  Google Scholar 

  • Knoll, A.H. and Barghoorn, E.S. (1977). Archean microfossils showing cell division from the Swaziland System of South Africa. Science 198, 396–398.

    Article  ADS  Google Scholar 

  • Knoll, A.H. and Walter, M.R. (1996). The limits of palaeontological knowledge: finding gold among the dross. In G.R. Bock and J.A. (eds.) Goode Evolution of Hydrothermal Ecosystems on Earth (and Mars?). Wiley, Chichester, pp. 198–213.

    Chapter  Google Scholar 

  • Krumbein, W.E. and Werner, D. (1983). The Microbial Silica Cycle. Blackwell, Oxford.

    Google Scholar 

  • Lepland, A., Arrhenius, G. and Cornell, D. (2002). Apatite in the Early Archean Isua supracrustal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker. Precamb. Res. 118, 221–241.

    Article  Google Scholar 

  • Lepland, A., van Zuilen, M.A., Arrehnius, G., Whitehouse, M.J. and Fedo, C.M. (2005). Questioning the evidence for Earth’s earliest life — Akilia revisited. Geology 33, 77–79.

    Article  ADS  Google Scholar 

  • Lepot K., Benzerara K., Brown G. E. and Philippot P. (2008). Microbially influenced formation of 2,724-million-year-old stromatolites. Nature Geoscience Advance, Online Publication (27 January 2008).

    Google Scholar 

  • Lowe, D.R. (1980). Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284, 441–443.

    Article  ADS  Google Scholar 

  • Lowe, D.R. (1994). Abiological origin of described stromatolites older than 3.2Ga. Geology 22, 387–390.

    Article  ADS  Google Scholar 

  • Lowe, D.R. and Byerly, G.R. (Eds.) (1999). Geologic Evolution of the Barberton Greenstone Belt, South Africa. Geological Society, London, Special Paper, Vol. 329, Boulder, CO.

    Google Scholar 

  • Manning, C.E., Mojzsis, S.J. and Harrison, T.M. (2006). Geology, age and origin of supracrustal rocks at Akilia, West Greenland. Am. J. Sci. 306, 303–366.

    Article  Google Scholar 

  • McCollum, T.M. and Seewald, J.S. (2006). Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. E.P.S.L. 243, 74–84.

    Article  Google Scholar 

  • McClendon, J.H. (1999). The origin of life. Earth Sci. Rev. 47, 71–93.

    Article  ADS  Google Scholar 

  • McKay, C.P. and Stoker, C.R. (1989). The early environment and its evolution on Mars: implications for life. Rev. Geophys. 27, 189–214.

    Article  ADS  Google Scholar 

  • McKay, D.S., Gibson Jr., E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. and Zare, R.N. (1996). Search for past life on Mars: possible relic biogenetic activity in Martian meteorite ALH84001. Science 273, 924–930.

    Article  ADS  Google Scholar 

  • McKay, D.S., Clemett, S.J., Thomas-Keprta, K.L., Wentworth, S.J., Gibson Jr., E.K., Robert, F., Verchovsky, A.B., Pillinger, C.T., Rice, T. and Van Leer, B. (2006). Observation and analysis of in situ carbonaceous matter in Nakhla: Part 1. Lunar Planet. Sci. XXXVII.

    Google Scholar 

  • McKeegan, K.D., Kudryavtsev, A.B. and Schopf, J.W. (2007). Raman and ion microscopic imagery of graphitic inclusions in apatite from older than 3830Ma Akilia supracrustal rocks, west Greenland. Geology 35, 591–594.

    Article  ADS  Google Scholar 

  • McLoughlin, N., Brasier, M.D., Perry, R.S., Wacey, D. and Green, O.R. (2007). On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7, 10–11.

    Article  ADS  Google Scholar 

  • McLoughlin, N., Wilson, L. and Brasier, M.D. (2008a). Growth of synthetic stromatolites and wrinkle structures in the absence of microbes — implications for the early fossil record. Geobiology 6, 95–105.

    Article  Google Scholar 

  • McLoughlin, N., Furnes, H., Banerjee, N.R. Staudigel, H., Muehlenbachs, K., de Wit, M. and Van Kranendonk, M. (2008b). Micro-bioerosion in volcanic glass: extending the ichnofossil record to Archean Basaltic Crust. In M. Wisshak and L. Taplina (eds.) Current Developments in Bioersion, pp. 371–396 Springer, Heidelberg, Germany.

    Chapter  Google Scholar 

  • Mojzsis, S.J. (2007). Sulphur on the early Earth. In M.J. Van Kranendonk, H.R. Smithies and V.C. Bennett (eds.) Earth’s Oldest Rocks. Developments in Precambrian Geology, Vol. 15, Elsevier, Amsterdam.

    Google Scholar 

  • Mojzsis, S.J. and Harrison, T.M. (2000). Vestiges of a beginning; clues to the emergent biosphere recorded in the oldest known sedimentary rocks. GSA Today 10, 1–6.

    Google Scholar 

  • Mojzsis, S.J., Arrenhius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P. and Friend, C.R.L. (1996). Evidence for life on Earth 3,800 million years ago. Nature 384, 55–59.

    Article  ADS  Google Scholar 

  • Moorbath, S., O’Nions, R.K. and Pankhurst, R.J. (1973). Early Archaean age for the Isua iron formation, West Greenland. Nature 245, 138–139.

    Article  ADS  Google Scholar 

  • Muir, M.D. and Grant, P.R. (1976). Micropalaeontological evidence from the Onverwacht Group, South Africa. In: B.F. Windley (ed.) The Early History of the Earth, Wiley Interscience, London, pp. 595–608.

    Google Scholar 

  • Nagy, B. and Nagy, L.A. (1969). Early Precambrian Onverwacht microstructures: possibly the oldest fossils on Earth? Nature 223, 1226–1228.

    Article  ADS  Google Scholar 

  • Nisbet, E.G. and Sleep, N. (2001). The habitat and nature of early life. Nature 409, 1083–1091.

    Article  ADS  Google Scholar 

  • Noffke, N., Hazen, R. and Nhleko, N. (2003). Earth’s earliest microbial mats in a siliciclastic marine environment (2.9Ga Mozaan Group, South Africa). Geology, 31, 8, 673–676.

    Article  Google Scholar 

  • Noffke, N., Eriksson, K.A., Hazen, R.M. and Simpson, E.L. (2006). A new window into early Archean life: microbial mats in Earth’s oldest siliclastic tidal deposits (3.2Ga Moodies Group, South Africa). Geology 34, 253–256.

    Article  ADS  Google Scholar 

  • Nutman, A.P. and Friend, C.R.L. (2006). Petrography and geochemistry of apatites in banded iron formation, Akilia W Greenland: consequences for oldest evidence life evidence. Precamb. Res. 147, 100–106.

    Article  Google Scholar 

  • Nutman, A.P., McGregor, V.R., Friend, C.R.L., Bennett, V.C. and Kinny, P.D. (1996). The Itsaq Gneiss complex of southern West Greenland; the world’s most extensive record of early crustal evolution (3900–3600 Ma). Precamb. Res. 78, 1–39.

    Article  Google Scholar 

  • Nutman, A.P., Bennett, V.C., Friend, C.R.L. and Rosing, M.T. (1997a). 3710 and ≥3790Ma volcanic sequences in the Isua (Greenland) supracrustal belt; structural and Nd isotope implications. Chem. Geol. 141, 271–287.

    Article  Google Scholar 

  • Nutman, A.P., Mojzsis, S.J. and Friend, C.R.L. (1997b). Recognition of ≥3850Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth. Geochim. Cosmochim. Acta 61, 2475–2484.

    Article  ADS  Google Scholar 

  • Ohmoto, H., Kakegawa, T. and Lowe, D.R. (1993). 3.4-billion-year-old pyrites from Barberton, South Africa: sulfur isotope evidence. Science 262, 555–557.

    Article  ADS  Google Scholar 

  • Philippot, P., van Zuilen, M.A., Lepot, K., Thomazo, C., Farquhar, J. and Van Kranendonk, M.J. (2007). Early Archean microorganisms preferred elemental sulfur, not sulfate. Science 317, 1534–1537.

    Article  ADS  Google Scholar 

  • Pflug, H.D. (1967). Organic remains from over 3 billion year old rocks of South Africa. Naturwissenschaften 54, 236–241.

    Article  ADS  Google Scholar 

  • Rasmussen, B. (2000). Filamentous microfossils in a 3,250-million-year-old volcanogenic massive sulphide deposit. Nature 405, 676–679.

    Article  ADS  Google Scholar 

  • Rosing, M.T. (1999). 13C Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283, 674–676.

    Article  ADS  Google Scholar 

  • Russell, M.J. and Arndt, N.T. (2005). Geodynamic and metabolic cycles in the Hadean. Biogeosciences 2,97–111.

    Article  Google Scholar 

  • Schidlowski, M. (2001). Carbon isotopes as biogeochemical recorders of life over 3.8Ga of Earth history: evolution of a concept. Precamb. Res. 106, 117–134.

    Article  Google Scholar 

  • Schopf, J.W. (1992a). The oldest fossils and what they mean. In J.W. Schopf (ed.) Major Events in the History of Life. John and Bartlett, Boston, MA, pp. 29–63.

    Google Scholar 

  • Schopf, J.W. (1992b). Paleobiology of the Archaean. In J.W. Schopf and C. Klein (eds.) The Proterozoic Biosphere: A Multidisciplinary Study,. Cambridge University Press, New York, pp. 25–39.

    Google Scholar 

  • Schopf, J.W. (1993). Microfossils of the early Archean Apex chert: new evidence of the antiquity of life. Science 260, 640–646.

    Article  ADS  Google Scholar 

  • Schopf, J.W. (1999). Cradle of Life. Princeton University Press, Princeton, NJ, 367 pp.

    Google Scholar 

  • Schopf, J.W. (2006). Fossil evidence of Archean life. Phil. Trans. Roy. Soc. B 361, 869–886.

    Google Scholar 

  • Schopf, J.W. and Barghoorn, E.S. (1967). Alga-like fossils from the early Precambrian of South Africa. Science 156, 508–512.

    Article  ADS  Google Scholar 

  • Schopf, J.W. and Walter, M.R. (1983). Archean microfossils: new evidence of ancient microbes. In J.W Schopf (ed.) Earth’s Earliest Biosphere, Its Origin and Evolution, Princeton University Press, Princeton, NJ, pp. 214–239.

    Google Scholar 

  • Schopf, J.W. and Packer, B.M. (1987). Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia. Science 237, 70–73.

    Article  ADS  Google Scholar 

  • Schopf, J.W., Kudryyavtsev, A.B., Agresti, D.G., Wdowiak, T.J. and Czaja, A.D. (2002). Laser-Raman imagery of Earth’s earliest fossils. Nature 416, 73–76.

    Article  ADS  Google Scholar 

  • Schopf, J.R. Walter, M.R. and Ruiji, C. (Eds.) (2007). Earliest evidence of life on Earth. Precamb. Res. 158, 139–262.

    Google Scholar 

  • Semikhatov, M.A., Gebelein, C.D., Cloud, P., Awramik, S.M. and Benmore, W.C. (1979). Stromatolite morphogenesis: progress and problems. Can. J. Earth Sci. 16, 992–1015.

    Google Scholar 

  • Shen, Y. and Buick, R. (2004). The antiquity of microbial sulfate reduction. Earth-Sci. Rev. 64, 243–272.

    Article  ADS  Google Scholar 

  • Shen, Y. Buick, R. and Canfield D.E. (2001). Isotopic evidence for microbial sulphate reduction in the early Archean era. Nature 410, 77–81.

    Article  ADS  Google Scholar 

  • Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., Bell, 3rd, J. F., Calvin, W., Christensen, P.R., Clark, B.C., Crisp, J.A., Farrand, W.H., Herkenhoff, K.E., Johnson, J.R., Klingelhofer, G., Knoll, A.H., McSween Jr., H.J., Morris, R.V., Rice Jr., J.W., Rieder, R., Soderblom, L.A. (2004). Two years at Meridiani Planum: results from the Opportunity Rover. Science 306, 1709–1714 (2004)

    Article  ADS  Google Scholar 

  • Sugitani, K., Grey, K., Allwood, A. Nagaoka, T., Mimura, K., Minami, M., Marshall, C.P., Van Kranendonk, M. and Walter, M.R. (2007). Diverse microstructures from Archaen chert from the Mount Goldsworthy-Mount Grant area, Pilbara Craton, Western Australia: microfossils, dubiofossils, or pseudofossils? Precamb. Res. 158, 28–262.

    Google Scholar 

  • Summons, R.E., Jahnke, L.L., Hope, M. and Logan, G.A. (1999). 2-methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557.

    Article  ADS  Google Scholar 

  • Thamdrup, B. (2007). New players in an ancient cycle. Science 317, 1508–1509.

    Article  Google Scholar 

  • Thomas-Keprta, K.L., Bazylinski, D.A., Kirschvink, J.L., Clement, S.J., McKay, D.S., Wentworth, S.J., Vali, H., Gibson, E.K., Jr., McKay, M.F. and Romanek, C.S. (2000). Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim. Cosmochim. Acta 64, 4049–4081.

    Article  ADS  Google Scholar 

  • Thomas-Keprta, K.L., Clemett, S.J., Bazylinski, D.A., Kirschvink, J.L., McKay, D.S., Wentworth, S.J., Vali, H., Gibson, E.K., Jr., McKay, M.F. and Romanek, C.S. (2001). Truncated hex-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc. Nat. Acad. Sci. USA 98, 2164–2169.

    Article  ADS  Google Scholar 

  • Tice, M.M. and Lowe, D.R. (2004). Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431, 549–552.

    Article  ADS  Google Scholar 

  • Tice, M.M. and Lowe, D.R. (2006). The origin of carbonaceous matter in pre-3.0Ga greenstone terrains: a review and new evidence from the 3.42 Ga Buck Reef Chert. Earth-Sci. Rev. 76, 259–300

    Article  ADS  Google Scholar 

  • Tyler, S.T. and Barghoorn, E.S. (1963). Ambient pyrite grains in Precambrian cherts. Am. J. Sci. 261, 424–432.

    Article  Google Scholar 

  • Ueno, Y., Isozaki, Y., Yurimoto, H. and Maruyama, S. (2001). Carbon isotopic signatures of individual Archean microfossils (?) from Western Australia. Int. Geol. Rev. 43, 196–212.

    Article  Google Scholar 

  • Ueno, Y., Yurimoto, H., Yoshioka, H., Komiya, T. and Maruyama, S. (2002). Ion microprobe analysis of graphite from ca. 3.8Ga metasediments, Isua supracrustal belt, West Greenland: relationship between metamorphism and carbon isotopic composition. Geochim. Cosmochim. Acta 66, 1257–1268.

    Article  ADS  Google Scholar 

  • Van Kranendonk, M.J. (2006). Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth-Sci. Rev. 74, 197–240.

    Article  ADS  Google Scholar 

  • Van Kranendonk, M.J. (2007). A review of the evidence for putative Paleoarchean life in the Pilbara Craton, Western Australia. In M.J. Van Kranendonk, H.R. Smithies and V.C. Bennett (eds.) Earth’s Oldest Rocks. Developments in Precambrian Geology, Vol. 15, Elsevier, Amsterdam.

    Google Scholar 

  • Van Kranendonk M.J, Webb G.E. and Kamber B.S. (2003). Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archean ocean. Geobiology 1, 91–108.

    Article  Google Scholar 

  • Van Kranendonk, M.J., Smithies, H.R. and Bennett, V.C. (Eds.) (2007). Earth’s Oldest Rocks. Developments in Precambrian Geology, Vol. 15, Elsevier, Amsterdam.

    Google Scholar 

  • Van Zuilen M.A. (2007). Stable isotope ratios as a biomarker on Mars. Space Sci. Rev. DOI: 10.1007/S11214-007-9268-1.

    Google Scholar 

  • Van Zuilen, M.A., Lepland, A. and Arhenius, G. (2002). Reassessing the evidence for the earliest traces of life, Nature 418, 627–630.

    Article  ADS  Google Scholar 

  • Van Zuilen, M.A., Lepland, A., Teranes, J., Finarelli, J., Wahlen, M. and Arrhenius, G. (2003). Graphite and carbonates in the 3.8Ga old Isua Supracrustal Belt, southern West Greenland. Precamb. Res. 126, 331–348.

    Article  Google Scholar 

  • Van Zuilen, M.A., Mathew, K., Wopenka, B., Lepland, A., Martt, K. and Arrhenius, G. (2005). Nitrogen and argon isotopic signatures in graphite from the 3.8-Ga-old Isua Supracrustal Belt, Southern West Greenland. Geochim. Cosmochim. Acta 69, 1241–1252.

    Article  ADS  Google Scholar 

  • Van Zuilen, M.A., Chaussidon, M., Rollion-Bard, C. and Marty, B. (2007). Carbonaceous cherts of the Barberton Greenstone Belt, South Africa; isotopic, chemical, and structural characteristics of individual microstructures. Geochim. Cosmochim. Acta 71, 655–669.

    Article  ADS  Google Scholar 

  • Wacey, D., Kilburn, M.R., McLoughlin, N., Parnell, J. and Brasier, M.D. (2008a). Using NanoSIMS in the search for early life on Earth: ambient inclusion trails in a c. 3400 Ma sandstone. J. Geol. Soc. Lond. 165, 43–53.

    Article  Google Scholar 

  • Wacey, D., McLoughlin, N., Stoakes, C.A., Kilburn, M.R., Green, O.R. and Brasier, M.D. (2008b) The ∼3.4Ga Strelley Pool Chert in the East Strelley greenstone belt — a field and petrographic guide. Western Australia Geologic Survey, Record (in press).

    Google Scholar 

  • Walter, M.R., Buick, R. and Dunlop, J.S.R. (1980). Stromatolites, 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284, 443–445.

    Article  ADS  Google Scholar 

  • Walsh, M.M. (1992). Microfossils and possible microfossils from the early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precamb. Res. 54, 271–293.

    Article  ADS  Google Scholar 

  • Walsh, M.M. and Lowe, D.L. (1985). Filamentous microfossils from the 3,500Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314, 530–532.

    Article  ADS  Google Scholar 

  • Walsh, M.M. and Lowe, D.L. (1999). Modes of accumulation of carbonaceous matter in the early Archean: a petrographic and geochemical study of the carbonaceous cherts of the Swaziland Supergroup. In D.R. Lowe and G.R. Byerly (eds.) Geologic Evolution of the Barberton Greenstone Belt, South Africa. Geological Society, America, Special Paper, Vol. 329, Boulder, CO, pp. 167–188.

    Google Scholar 

  • Weiss, B.P., Kim, S.S., Kirschvink, J.L., Kopp, R.E., Sankaran, M., Kobayashi, A. and Komeili, A. (2004). Magnetic tests for magneosome chains in Martian meteorite ALH84001. Proc. Nat. Acad. Sci. USA 101, 8281–8284.90

    Article  ADS  Google Scholar 

  • Westall, F. (2005). Life on the early Earth: a sedimentary perspective. Science 308, 366–367.

    Article  Google Scholar 

  • Westall, F. and Folk, R.L. (2003). Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precamb. Res. 126, 313–330.

    Article  Google Scholar 

  • Westall, F. de Witt, M.J., Dann, J., van der Gaast, S., de Ronde, C. and Gerneke, D. (2001). Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precamb. Res. 106, 93–116.

    Article  Google Scholar 

  • Westall, F. de Ronde, C.E.J., Southam, G., Grassineau, N., Colas, M., Cockell, C. and Lammer, H. (2006a). Implications of a 3.472–3.333Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Phil. Trans. Roy. Soc. B. 361, 1857–1875.

    Article  Google Scholar 

  • Westall, F., de Vries, S. T., Nijman, W., Rouchon, V., Orberger, B., Pearson, V., Watson, J., Verchovsky, A., Wright, I., Rouzaud, J-N., Marchesini, D. and Severine, A. (2006b). The 3.446Ga “Kitty’s Gap Chert”, an early Archean microbial ecosystem. GSA Special Paper 405, 105–131.

    Google Scholar 

  • Whitehouse, M.J. and Fedo, C.M. (2007). Search for Earth’s earliest life in Southern West Greenland — history, current status, and future prospects. In M.J. Van Kranendonk, H.R. Smithies and V.C. Bennett (eds.) Earth’s Oldest Rocks. Developments in Precambrian Geology, Vol. 15, Elsevier, Amsterdam.

    Google Scholar 

  • Wilde, S.A., Valley, J.W., Peck, W.H. & Graham, C.M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4Gyr ago. Nature 409, 175–178.

    Article  ADS  Google Scholar 

  • Wolfram, S. 2002 A New Kind of Science. Wolfram Media Inc., Champaign, Illinois, USA, 1197p.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Wacey , Nicola Mcloughlin or Martin D. Brasier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Wacey, D., Mcloughlin, N., Brasier, M.D. (2009). Looking Through Windows onto the Earliest History of Life on Earth and Mars. In: Seckbach, J., Walsh, M. (eds) From Fossils to Astrobiology. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8837-7_3

Download citation

Publish with us

Policies and ethics