MALDI-TOF MS Analysis of Lipids from Cells, Tissues and Body Fluids

  • Beate Fuchs
  • Jürgen Schiller
Part of the Subcellular Biochemistry book series (SCBI, volume 49)


Many diseases as atherosclerosis and metabolic dysfunctions are known to correlate with changes of the lipid profile of tissues and body fluids. Therefore, the importance of reliable methods of lipid analysis is obvious. Although matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) was so far primarily used for protein analysis, this method has itself proven to be very useful in lipid analysis, too. This review provides an overview of applications of MALDI-TOF MS in lipid analysis and summarizes the specific advantages and drawbacks of this modern soft-ionization method. The focus will be on the analysis of body fluids and cells as well as the diagnostic potential of the method in the lipid field. It will be shown that MALDI-TOF mass spectra can be recorded in a very short time and provide important information on the lipid as well as the fatty acyl composition of the lipids of an unknown sample. However, it will also be shown that only selected lipid classes (in particular those with quaternary ammonia groups as phosphatidylcholine) are detected if crude mixtures are analyzed as they are more sensitively detectable than other ones. This review ends with a short outlook emphasizing current methodological developments.


Lipids Phospholipids Lipid Analysis MALDI-TOF MS Lipid Extracts Body Fluids Cells Tissues 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank all colleagues and friends who helped them in writing this review. Especially we wish to thank Dr. Holger Spalteholz, Dr. Jacqueline Leßig, Dr. Matthias Müller and Ms Rosmarie Süß. The kind and helpful advice of Dr. Suckau and Dr. Schürenberg (Bruker Daltonics, Bremen) is also gratefully acknowledged. This work was supported by the German Research Council (DFG Schi 476/5-1 and Schi 476/7-1 as well as the former HBFG program enabling the purchase of a Bruker "Autoflex" device) and the Federal Ministry of Education and Research (Grant BMBF 0313836).


  1. Aitken, R.J., A free radical theory of male infertility, Reprod Fertil Dev, 6 (1994) 19–23.PubMedCrossRefGoogle Scholar
  2. Al-Saad, K.A., Siems, W.F., Hill, H.H., Zabrouskov, V. and Knowles, N.R., Structural analysis of phosphatidylcholines by post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom, 14 (2003) 373–382.PubMedCrossRefGoogle Scholar
  3. Al-Saad, K.A., Zabrouskov, V., Siems, W.F., Knowles, N.R., Hannan, R.M. and Hill, H.H. Jr., Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of lipids: ionization and prompt fragmentation patterns. Rapid Commun Mass Spectrom, 17 (2003) 87–96.PubMedCrossRefGoogle Scholar
  4. Arnhold, J., Osipov, A.N., Spalteholz, H., Panasenko, O.M. and Schiller, J., Formation of lysophospholipids from unsaturated phosphatidylcholines under the influence of hypochlorous acid, Biochim Biophys Acta, 1572 (2002) 91–100.PubMedGoogle Scholar
  5. Ayorinde, F.O., Garvin, K. and Saeed, K., Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Rapid Commun Mass Spectrom, 14 (2000) 608–615.PubMedCrossRefGoogle Scholar
  6. Ayorinde, F.O., Hambright, P., Porter, T.N. and Keith, Q.L. Jr., Use of mesotetrakis(pentafluorophenyl)porphyrin as a matrix for low molecular weight alkylphenol ethoxylates in laser desorption/ ionization time-of-flight mass spectrometry, Rapid Commun Mass Spectrom, 13 (1999) 2474–2479.PubMedCrossRefGoogle Scholar
  7. Bartlett, G.R., Phosphorus assay in column chromatography, J Biol Chem, 234 (1959) 466–468.PubMedGoogle Scholar
  8. Benard, S., Arnhold, J., Lehnert, M., Schiller, J. and Arnold, K., Experiments towards quantification of saturated and polyunsaturated diacylglycerols by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS), Chem Phys Lipids, 100 (1999) 115–125.CrossRefGoogle Scholar
  9. Byrdwell, W.C., Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids, Lipids 36 (2001) 327–346.PubMedCrossRefGoogle Scholar
  10. Cho, A. and Normile, D., Nobel Prize in chemistry. Mastering macromolecules, Science, 298 (2002) 527–528.Google Scholar
  11. Christie W. W., Lipid Analysis, Oily Press, Bridgwater, 2003.Google Scholar
  12. Clejan, S., HPLC analytical methods for the separation of molecular species of fatty acids in diacylglycerol and cellular phospholipids, Methods Mol Biol, 105 (1998) 255–274.PubMedGoogle Scholar
  13. Cohen, L.H. and Gusev, A.I., Small molecule analysis by MALDI mass spectrometry, Anal Bioanal Chem, 373 (2002) 571–586.PubMedCrossRefGoogle Scholar
  14. Estrada, R. and Yappert, M.C., Alternative approaches for the detection of various phospholipid classes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, J Mass Spectrom, 39 (2004) 412–422.PubMedCrossRefGoogle Scholar
  15. Exton, J.H., Messenger molecules derived from membrane lipids, Curr Opin Cell Biol, 6 (1994) 226–229.PubMedCrossRefGoogle Scholar
  16. Fuchs, B., Müller, K., Göritz, F., Blottner, S. and Schiller, J., Characteristic oxidation products of choline plasmalogens are detectable in cattle and roe deer spermatozoa by MALDI-TOF mass spectrometry, Lipids, 42 (2007) 991–998.PubMedCrossRefGoogle Scholar
  17. Fuchs, B., Schiller, J. and Cross, M.A., Apoptosis-associated changes in the glycerophospholipid composition of hematopoietic progenitor cells monitored by 31P NMR spectroscopy and MALDI-TOF mass spectrometry, Chem Phys Lipids, 150 (2007) 229–238.PubMedCrossRefGoogle Scholar
  18. Fuchs, B., Schiller, J., Süß, R., Schürenberg, M. and Suckau, D., A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk, Anal Bioanal Chem, 389 (2007) 827–834.PubMedCrossRefGoogle Scholar
  19. Fuchs, B., Schiller, J., Wagner, U., Häntzschel, H. and Arnold, K., The phosphatidylcholine/lysophosphatidylcholine ratio in human plasma is an indicator of the severity of rheumatoid arthritis: investigations by 31P NMR and MALDI-TOF MS, Clin Biochem, 38 (2005) 925–933.PubMedCrossRefGoogle Scholar
  20. Fuchs, B., Schober, C., Richter, G., Süß, R. and Schiller, J., MALDI-TOF MS of phosphatidylethanolamines: different adducts cause different post source decay (PSD) fragment ion spectra, J Biochem Biophys Methods, 70 (2007) 689–692.PubMedCrossRefGoogle Scholar
  21. Fukuzawa, S., Asanuma, M., Tachibana, K. and Hirota, H., On-probe sample preparation without washes for matrix-assisted laser desorption/ionization mass spectrometry using an anion exchange medium, Anal Chem, 77 (2005) 5750–5754.PubMedCrossRefGoogle Scholar
  22. Gellermann, G.P., Appel, T.R., Davies, P. and Diekmann, S., Paired helical filaments contain small amounts of cholesterol, phosphatidylcholine and sphingolipids. Biol Chem, 387 (2006) 1267–1274.PubMedCrossRefGoogle Scholar
  23. Gidden, J., Liyanage, R., Durham, B. and Lay, J.O. Jr., Reducing fragmentation observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of triacylglycerols in vegetable oils, Rapid Commun Mass Spectrom, 21 (2007) 1951–1957.PubMedCrossRefGoogle Scholar
  24. Glander, H.J., Schiller, J., Süß, R., Paasch, U., Grunewald, S. and Arnhold, J., Deterioration of spermatozoal plasma membrane is associated with an increase of sperm lyso-phosphatidylcholines, Andrologia, 34 (2002) 360–366.PubMedCrossRefGoogle Scholar
  25. Hankin, J.A., Barkley, R.M. and Murphy, R.C., Sublimation as a method of matrix application for mass spectrometric imaging, J Am Soc Mass Spectrom, 18 (2007) 1646–1652.PubMedCrossRefGoogle Scholar
  26. Harvey, D.J., Matrix-assisted laser desorption/ionization mass spectrometry of phospholipids, J Mass Spectrom, 30 (1995) 1333–1346.CrossRefGoogle Scholar
  27. Heller, A., Koch, T., Schmeck, J. and van Ackern, K., Lipid mediators in inflammatory disorders, Drugs 55 (1998) 487–496.PubMedCrossRefGoogle Scholar
  28. Hidaka, H., Hanyu, N., Sugano, M., Kawasaki, K., Yamauchi, K. and Katsuyama, T., Analysis of human serum lipoprotein lipid composition using MALDI-TOF mass spectrometry, Ann Clin Lab Sci, 37 (2007) 213–221.PubMedGoogle Scholar
  29. Hillenkamp, F. and Karas, M., The MALDI process and method, in: Hillenkamp, F. and Peter-Katalinić, J. (Eds), MALDI MS, Wiley-VCH, Weinheim, 2007, pp. 1–28.Google Scholar
  30. Hillenkamp, F. and Peter-Katalinić, J., MALDI MS -A Practical Guide to Instrumentation, Methods and Application, Wiley-VCH, Weinheim, 2007.Google Scholar
  31. Huster, D., Investigations of the structure and dynamics of membrane-associated peptides by magic angle spinning NMR, Progr Nucl Magn Reson Spectrosc, 46 (2005) 79107.CrossRefGoogle Scholar
  32. Jackson, S.N., Wang, H.Y. and Woods, A.S., Direct profiling of lipid distribution in brain tissue using MALDI-TOF MS, Anal Chem, 77 (2005) 4523–4527.PubMedCrossRefGoogle Scholar
  33. Johanson, R.A., Buccafusca, R., Quong, J.N., Shaw, M.A. and Berry, G.T., Phosphatidylcholine removal from brain lipid extracts expands lipid detection and enhances phosphoinositide quantification by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, Anal Biochem, 362 (2007) 155–167.PubMedCrossRefGoogle Scholar
  34. Jones, J.J., Borgmann, S., Wilkins, C.L. and O’Brien, R.M., Characterizing the phospholipid profiles in mammalian tissues by MALDI FTMS, Anal Chem, 78 (2006) 3062–3071.PubMedCrossRefGoogle Scholar
  35. Karas, M., Glückmann, M. and Schäfer, J., Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J Mass Spectrom, 35 (2000) 1–12.PubMedCrossRefGoogle Scholar
  36. Knochenmuss, R. and Zenobi, R., MALDI ionization: the role of in-plume processes, Chem Rev, 103 (2003) 441–452.PubMedCrossRefGoogle Scholar
  37. Li, Y.L., Gross, M.L. and Hsu, F.F., Ionic-liquid matrices for improved analysis of phospholipids by MALDI-TOF mass spectrometry, J Am Soc Mass Spectrom, 16 (2005) 679–682.PubMedCrossRefGoogle Scholar
  38. Liesener, A. and Karst, U., Monitoring enzymatic conversions by mass spectrometry: a critical review, Anal Bioanal Chem, 382 (2005) 1451–1464.PubMedCrossRefGoogle Scholar
  39. Marriot, P.J., Shellie, R. and Cornwell, C., Gas chromatographic technologies for the analysis of essential oils, J Chromatogr A, 936 (2002) 1–22.CrossRefGoogle Scholar
  40. McDonnell, L.A. and Heeren, R.M., Imaging mass spectrometry, Mass Spectrom Rev, 26 (2007) 606–643.PubMedCrossRefGoogle Scholar
  41. Müller, M., Schiller, J., Petković, M., Oehrl, W., Heinze, R., Wetzker, R., Arnold, K. and Arnhold, J., Limits for the detection of (poly-)phosphoinositides by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDITOF MS), Chem Phys Lipids, 110 (2001) 151–164.PubMedCrossRefGoogle Scholar
  42. Murphy, R.C., Mass spectrometry of phospholipids: Tables of molecular and productions, Illuminati Press, Denver, 2002.Google Scholar
  43. Peterson, B.L. and Cummings, B.S., A review of chromatographic methods for the assessment of phospholipids in biological samples, Biomed Chromatogr, 20 (2006) 227–243.PubMedCrossRefGoogle Scholar
  44. Petković, M., Müller, J., Müller, M., Schiller, J., Arnold, K. and Arnhold, J., Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for monitoring the digestion of phosphatidylcholine by pancreatic phospholipase A2, Anal Biochem, 308 (2002) 61–70.PubMedCrossRefGoogle Scholar
  45. Petković, M., Schiller, J., Müller, J., Müller, M., Arnold, K. and Arnhold, J., The signal-to-noise ratio as the measure for the quantification of lysophospholipids by matrixassisted laser desorption/ionization time-of-flight mass spectrometry, Analyst, 126 (2001) 1042–1050.PubMedCrossRefGoogle Scholar
  46. Pulfer, M. and Murphy, R.C., Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev, 22 (2003) 332–364.PubMedCrossRefGoogle Scholar
  47. Reid Asbury, G., Al-Saad, K., Siems, W.F., Hannan, R.M. and Hill, H.H. Jr., Analysis of triacylglycerols and whole oils by matrix-assisted laser desorption/ionization time of flight mass spectrometry, J Am Soc Mass Spectrom, 10 (199) 983–991.Google Scholar
  48. Rohlfing, A., Müthing, J., Pohlentz, G., Distler, U., Peter-Katalinić, J., Berkenkamp, S. and Dreisewerd, K., IR-MALDI-MS analysis of HPTLC-separated phospholipid mixtures directly from the TLC plate, Anal Chem, 79 (2007) 5793–5808.PubMedCrossRefGoogle Scholar
  49. Rujoi, M., Estrada, R. and Yappert, M.C., In situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue, Anal Chem, 76 (2004) 1657–1663.PubMedCrossRefGoogle Scholar
  50. Schiller, J. and Arnold, K., Application of high resolution 31P NMR spectroscopy to the characterization of the phospholipid composition of tissues and body fluids -a methodological review, Med Sci Monit, 8 (2002) MT205–222.PubMedGoogle Scholar
  51. Schiller, J. and Arnold, K., Mass spectrometry in structural biology, in: Meyers, R.A. (Ed), Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., Chichester, 2000, pp. 559–585.Google Scholar
  52. Schiller, J., Arnhold, J., Benard, S., Müller, M., Reichl, S. and Arnold, K., Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: A methodological approach, Anal Biochem, 267 (1999) 46–56.PubMedCrossRefGoogle Scholar
  53. Schiller, J., Arnhold, J., Glander, H.-J. and Arnold, K., Lipid analysis of human spermatozoa and seminal plasma by MALDI-TOF mass spectrometry and NMR spectroscopy–effects of freezing and thawing. Chem Phys Lipids, 106 (2000) 145–156.PubMedCrossRefGoogle Scholar
  54. Schiller, J., Fuchs, B. and Arnold, K., The molecular organization of polymers of artilage: An overview of health and disease, Curr Org Chem, 10 (2006) 1771–1789.CrossRefGoogle Scholar
  55. Schiller, J., Hammerschmidt, S., Wirtz, H., Arnhold, J. and Arnold, K., Lipid analysis of bronchoalveolar lavage fluid (BAL) by MALDI-TOF mass spectrometry and 31P NMR spectroscopy, Chem Phys Lipids, 112 (2001) 67–79.PubMedCrossRefGoogle Scholar
  56. Schiller, J., Müller, K., Süβ, R., Arnhold, J., Gey, C., Herrmann, A., Leβig, J., Arnold. K. and Müller, P., Analysis of the lipid composition of bull spermatozoa by MALDITOF mass spectrometry–a cautionary note, Chem Phys Lipids, 126 (2003) 85–94.PubMedCrossRefGoogle Scholar
  57. Schiller, J., Müller, M., Fuchs, B., Arnold, K. and Huster, D., 31P NMR spectroscopy of phospholipids: From micelles to membranes. Curr Anal Chem, 3 (2007) 283–301.CrossRefGoogle Scholar
  58. Schiller, J., Süβ, R., Arnhold, J., Fuchs, B., Leβig, J., Müller, M., Petković, M., Spalteholz, H., Zschörnig, O. and Arnold, K., Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res, 43 (2004) 449–488.PubMedCrossRefGoogle Scholar
  59. Schiller, J., Süβ, R., Fuchs, B., Müller, M., Petković, M., Zschörnig, O. and Waschipky, H., The suitability of different DHB isomers as matrices for the MALDITOF MS analysis of phospholipids: which isomer for what purpose? Eur Biophys J, 36 (2007) 517–527.PubMedCrossRefGoogle Scholar
  60. Schiller, J., Süβ, R., Fuchs, B., Müller, M., Zschörnig, O. and Arnold, K., MALDITOF MS in lipidomics. Front Biosci, 12 (2007) 2568–2579.PubMedCrossRefGoogle Scholar
  61. Schiller, J., Süss, R., Petković, M., Zschörnig, O. and Arnold, K., Negative-ion matrix-assisted laser desorption and ionization time-of-flight mass spectra of complex phospholipids mixtures in the presence of phosphatidylcholine: a cautionary note on peak assignment. Anal Biochem, 309 (2002) 311–314.PubMedCrossRefGoogle Scholar
  62. Schiller, J., Zschörnig, O., Petković, M., Müller, M., Arnhold, J. and Arnold, K., Lipid analysis of human HDL and LDL by MALDI-TOF mass spectrometry and 31P NMR, J Lipid Res, 42 (2001) 1501–1508.PubMedGoogle Scholar
  63. Sommerer, D., Süβ, R., Hammerschmidt, S., Wirtz, H., Arnold, K. and Schiller, J., Analysis of the phospholipids composition of bronchoalveolar lavage (BAL) fluid from man and minipig by MALDI-TOF mass spectrometry in combination with TLC, J Pharm Biomed Anal, 35 (2004) 199–206.PubMedCrossRefGoogle Scholar
  64. Stoeckli, M., Chaurand, P., Hallahan, D.E. and Caprioli, R.M., Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues, Nat Med, 7 (2001) 493–496.PubMedCrossRefGoogle Scholar
  65. Touboul, D., Piednoël, H., Voisin, V., De La Porte, S., Brunelle, A., Halgand, F. and Laprévote, O., Changes of phospholipid composition within the dystrophic muscle by matrix-assisted laser desorption/ionization mass spectrometry and mass spectrometry imaging. Eur J Mass Spectrom, 10 (2004) 657–664.CrossRefGoogle Scholar
  66. Touchstone, J.C., Thin-layer chromatographic procedures for lipid separation, J Chromatogr B, 671 (1995) 169–195.CrossRefGoogle Scholar
  67. Wakelam, M.J., Diacylglycerol-when is it an intracellular messenger? Biochim Biophys Acta, 1436 (1998) 1117–1126.Google Scholar
  68. Wenk, M.R., The emerging field of lipidomics, Nat Rev Drug Discov, 4 (2005) 594–610.PubMedCrossRefGoogle Scholar
  69. Wetzel, S.J., Guttman, C.M. and Flynn, K.M., The influence of electrospray deposition in matrix-assisted laser desorption/ionization mass spectrometry sample preparation for synthetic polymers, Rapid Commun Mass Spectrom, 18 (2004) 1139–1146.PubMedCrossRefGoogle Scholar
  70. White, T., Bursten, S., Frederighi, D., Lewis, R.A. and Nudelman, E., High-resolution separation and quantification of neutral lipid and phospholipids species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography. Anal Biochem, 10 (1998) 109–117.CrossRefGoogle Scholar
  71. Wolf, C. and Quinn, P.J., Lipidomics: Practical aspects and applications. Progr Lipid Res, 2007, in press.Google Scholar
  72. Zschörnig, O., Pietsch, M., Süβ. R., Schiller, J. and Gütschow, M., Cholesterol esterase action on human high density lipoproteins and inhibition studies: detection by MALDI-TOF MS, J Lipid Res, 46 (2005) 803–811.PubMedCrossRefGoogle Scholar
  73. Zschörnig, O., Richter, V., Rassoul, F., Süβ, R., Arnold, K. and Schiller, J., Analysis of human blood plasma by MALDI-TOF MS-Evaluation of critical parameters, Anal Lett, 39 (2006) 1101–1113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Beate Fuchs
    • 1
  • Jürgen Schiller
  1. 1.University of Leipzig, Medical DepartmentInstitute of Medical Physics and BiophysicsGermany

Personalised recommendations