Advertisement

The Reverse Method of Lines in Flexible Multibody Dynamics

  • Christoph Lunk
  • Bernd Simeon
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 12)

Adaptivity is a crucial prerequisite for efficient and reliable simulations. In multibody dynamics, adaptive time integration methods are standard today, but the treatment of elastic bodies is still based on an a priori fixed spatial discretization. This contribution introduces a basic algorithm in the fashion of the reverse method of lines that is able to adapt both the spatial grid and the time step size from step to step. Two examples, a catenary with a moving pantograph head and a flexible slider crank mechanism, illustrate the approach.

Keywords

Elastic Body Multibody System Posteriori Error Spatial Grid Multibody Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold M, Bruls O (2008) Convergence of the generalized-alpha scheme for constrained mechanical systems. Multibody System Dynamics, 18:185–202 (2007)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Arnold M, Simeon B (2000) Pantograph and catenary dynamics: a benchmark problem and its numerical solution. Appl Numer Math 34:345–362MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. Birkhäuser, BaselMATHGoogle Scholar
  4. 4.
    Bank RE, Smith RK (1993) A posteriori error estimates based on hierarchical bases. SIAM J Numer Anal 30:921–935MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bornemann F (1991) An adaptive multilevel approach to parabolic equations. IMPACT 4:279–317Google Scholar
  6. 6.
    Bornemann F, Schemann M (1998) An adaptive Rothe method for the wave equation. Comput Visual Sci 1:137–144MATHCrossRefGoogle Scholar
  7. 7.
    Bottasso CL, Bauchau OA, Cardona A (2007) Time-step-size-independent conditioning and sensitivity to perturbations in the numerical solution of index three differential algebraic equations. SIAM J Scient Comput 29:397–414MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bremer H, Pfeiffer F (1992) Elastische mehrkörpersysteme. Teubner, StuttgartMATHGoogle Scholar
  9. 9.
    Carstensen C (2005) A unifying theory of a posteriori finite element error control. Numer Math 100:617–637MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized α-method. J Appl Mech 60:371–375MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Duvaut B, Lions JL (1976) Inequalities in mechanics and physics. Springer, Berlin/Heidelberg/New YorkMATHGoogle Scholar
  12. 12.
    Eich-Soellner E, Führer C (1998) Numerical methods in multibody dynamics. Teubner, StuttgartMATHGoogle Scholar
  13. 13.
    Gear C, Gupta G, Leimkuhler B (1985) Automatic integration of the Euler-Lagrange equations with constraints. J Comp Appl Math 12:77–90CrossRefMathSciNetGoogle Scholar
  14. 14.
    Géradin M, Cardona A (2000) Flexible multibody dynamics. Wiley, New YorkGoogle Scholar
  15. 15.
    Golub GH, van Loan CF (1996) Matrix computations. 3rd ed., John Hopkins University Press, Baltimore, MDMATHGoogle Scholar
  16. 16.
    Hairer E (2000) Symmetric projection methods for differential equations on manifolds. BIT 40:726–734MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hilber H, Hughes T, Taylor R (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng Struct Dyn 5:283–292CrossRefGoogle Scholar
  18. 18.
    Jahnke M, Popp K, Dirr B (1993) Approximate analysis of flexible parts in multibody systems using the finite element method. In: Schiehlen W (Ed). Advanced multibody system dynamics. Kluwer, StuttgartGoogle Scholar
  19. 19.
    Jay L, Negrut D (2007) Extensions of the HHT-α method to differential-algebraic equations in mechanics. Elect Trans Numer Analysis (ETNA) 26:190– 208MathSciNetMATHGoogle Scholar
  20. 20.
    Lang J (2001) Adaptive multilevel solution of nonlinear parabolic PDE systems: theory, algorithm, and applications. Springer, Berlin/Heidelberg/New YorkMATHGoogle Scholar
  21. 21.
    Lunk C, Simeon B (2006) Solving constrained mechanical systems by the family of Newmark and α-methods. ZAMM 86:772–784MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lunk C (2008) Adaptive numerische verfahren zur lösung partieller differenzial-algebraischer gleichungen in der strukturdynamik. Hieronymus, MünchenGoogle Scholar
  23. 23.
    Schwertassek R, Wallrapp O (1998) Dynamik flexibler mehrkörpersysteme. Vieweg, BraunschweigGoogle Scholar
  24. 24.
    Shabana A (1998) Dynamics of multibody systems. Cambridge University Press, CambridgeMATHGoogle Scholar
  25. 25.
    Simeon B (2006) On Lagrange multipliers in flexible multibody dynamics. Comp Meth Appl Mech Eng 195:6993–7005MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Solberg J (2000) Finite element methods for frictionless dynamic contact between elastic materials. Ph.D. thesis, University of California, Berkeley, CAGoogle Scholar
  27. 27.
    Wohlmuth B, Krause R (2003) Monotone methods on non-matching grids for non-linear contact problems. SIAM J Scient Comp 25:324–347MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Wriggers P (2002) Computational contact mechanics. Wiley, ChichesterGoogle Scholar
  29. 29.
    Zienkiewicz OC, Zhu JZ (1992) The superconvergence patch recovery and a posteriori error estimates, Part I: The recovery technique. Int J Num Meth Eng 33:1331–1364MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Zentrum Mathematik, TU MünchenGarchingGermany

Personalised recommendations