Quantitative Material Characterization and Imaging at Nanoscale Using a New AFM Probe

  • F.L. Degertekin
  • M. Balantekin
  • A.G. Onaran
Conference paper
Part of the Acoustical Imaging book series (ACIM, volume 29)


The structure of an Atomic force microscope (AFM) probe that integrates fast electrostatic actuation and highly sensitive optical interferometric detection of tip motion is described. The use of this so-called FIRAT probe for quantitative material characterization with high spatial resolution is demonstrated through contact and adhesion modeling. Time resolved interaction forces between the AFM tip and the sample surface is used to map material properties of several samples including silicon, polymer and carbon nanotubes. Non-resonant tapping mode operation of the FIRAT probe has also been demonstrated for use with existing commercial AFM systems.

Key words

Atomic force microscopy Material characterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Binnig, C. F. Quate, and C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56, 930 (1986)CrossRefADSGoogle Scholar
  2. 2.
    M. E. Greene, C. R. Kinser, D. E. Kramer, L. S. C. Pingree, and M. C. Hersam, Application of scanning probe microscopy to the characterization and fabrication of hybrid nanomaterials, Microscopy Res. and Tech. 64, 415 (2004)CrossRefGoogle Scholar
  3. 3.
    N. A. Burnham and R. J. Colton, Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope, J. Vac. Sci. Technol. A 7, 2906 (1989)ADSGoogle Scholar
  4. 4.
    U. Rabe, K. Janser, and W. Arnold, Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment, Rev. Sci. Instrum. 67, 3281 (1996)CrossRefADSGoogle Scholar
  5. 5.
    K. Yamanaka and S. Nakano, Ultrasonic atomic force microscope with overtone excitation of cantilever, Jpn. J. Appl. Phys.,Part 1 35, 3787 (1996)CrossRefGoogle Scholar
  6. 6.
    H. U. Krotil, T. Stifter, H. Waschipky, K. Weishaupt, S. Hild, and O. Marti, Pulsed force mode: a new method for the investigation of surface properties, Surf. Interf. Anal. 27, 336 (1999)CrossRefGoogle Scholar
  7. 7.
    M. Balantekin and A. Atalar, Power dissipation analysis in tapping-mode atomic force microscopy, Phys. Rev. B 67, 193404 (2003)CrossRefADSGoogle Scholar
  8. 8.
    O. Sahin, G. Yaralioglu, R. Grow, S. F. Zappe, A. Atalar, C. F. Quate, and O. Solgaard, High-resolution imaging of elastic properties using harmonic cantilevers, Sens. Actuators A 114, 183 (2004).CrossRefGoogle Scholar
  9. 9.
    F. L. Degertekin, A. G. Onaran, M. Balantekin, W. Lee, N. A. Hall, and C. F. Quate, Sensor for direct measurement of interaction forces in probe microscopy, Appl. Phys. Lett. 87, 213109 (2005)CrossRefADSGoogle Scholar
  10. 10.
    A. G. Onaran, M. Balantekin, W. Lee, W. L. Hughes, B. A. Buchine, R. O. Guldiken, Z. Parlak, C. F. Quate, and F. L. Degertekin, A new atomic force microscope probe with force sensing integrated readout and active tip, Rev. Sci. Instrum. 77, 23501 (2006)CrossRefGoogle Scholar
  11. 11.
    B. Bhushan ed.Handbook of Micro/Nanotribology, (CRC, Boca Raton, Florida, 1999)Google Scholar
  12. 12.
    N. A. Burnham, R. J. Colton, and H. M. Pollock, Nanotechnology 4, 64 (1993).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • F.L. Degertekin
    • 1
  • M. Balantekin
    • 1
  • A.G. Onaran
    • 1
  1. 1.G.W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations