Skip to main content

De novo Designed Bacteriochlorophyll-Binding Helix-Bundle Proteins

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

The construction of small synthetic proteins that bind only one or a small number of (bacterio)chlorophylls ((B)Chls) is a powerful approach to understand the concepts and guidelines of protein-(B)Chl interactions and assembly; the systems can be extended, in a stepwise fashion, by adding other cofactors or by oligomerization. We review the unique aspects of the de novo design and construction of (B)Chl-binding proteins, and describe recent progress and challenges in designing new BChl-protein platforms for delineating general rules and guidelines of (B)Chl-protein assembly, structure, and function. The relevant aspects of chlorophyll (Chl) and BChl chemical structures are outlined, as well as the modes of interactions with natural proteins. Two distinct strategies are then described for designing de novo water-soluble (B)Chl-binding proteins. The first strategy is based on the covalent assembly of modular four-helix bundle proteins, the second follows the original non-covalent heme-binding protein maquette design, which relies on self-assembly of amphiphilic helices that is primarily driven by the hydrophobic effect. Finally, we demonstrate the extension of the latter to designing transmembrane-like versions of (B)Chl-protein maquettes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AP:

amphiphilic

BChl:

bacteriochlorophyll

BChlide:

bacteriochlorophyllide

BPhe:

bacteriopheophytin

BPheide:

bacteriopheophorbide

CD:

circular dichroism

Chi:

chlorophyll

Chlide:

chlorophyllide

HP:

hydrophilic

LP:

lipophilic

[M]-(B)Chlide:

(B)Chlide in which the central metal has been replaced by metal ‘M’

MOP:

modular organized protein

NIR:

near infrared

Phe:

pheophytin

RC:

reaction center

UV:

ultraviolet

Vis:

visible

References

  • Agostiano A, Cosma P, Trotta M, Monsu-Scolaro L and Micali N (2002) Chlorophyll a behavior in aqueous solvents: Formation of nanoscale self-assembled complexes. J Phys Chem B 106: 12820–12829

    CAS  Google Scholar 

  • Balaban TS, Linke-Schaetzel M, Bhise AD and Vanthuyne N and Roussel C (2004) Green self-assembling porphyrins and chlorins as mimics of the natural bacteriochlorophylls c, d, and e. Eur J Org Chem 2004: 3919–3930

    Google Scholar 

  • Barker PD (2003) Designing redox metalloproteins from bottom-up and top-down perspectives. Curr Op Struct Biol 13: 490–499

    CAS  Google Scholar 

  • Ben-Shem A, Nelson N and Frolow F (2003) Crystallization and initial X-ray diffraction studies of higher plant Photosystem I. Acta Crystallogr D Biol Crystallogr 59: 1824–1827

    PubMed  Google Scholar 

  • Biesiadka J, Loll B, Kern J, Irrgang K-D and Zouni A (2004) Crystal structure of cyanobacterial Photosystem II at 3.2 Å resolution: A closer look at the Mn cluster. Phys Chem Chem Phys 6: 4733–4736

    CAS  Google Scholar 

  • Bowie JU (2000) Understanding membrane protein structure by design. Nature Struct Biol 7: 92–94

    Google Scholar 

  • Boxer SG, Kuki A, Wright KA, Katz BA and Xuong N (1982) Oriented properties of the chlorophylls — electronic absorption-spectroscopy of orthorhombic pyrochlorophyllide α-apomyglobin single-crystals. Proc Natl Acad Sci USA 79: 1121–1125

    PubMed  CAS  Google Scholar 

  • Buchler JW (1975) Static coordination chemistry of metalloporphyrins. In: Smith KM (ed) Porphyrins and Metalloporphyrins, pp 157–232. Elsevier, Amsterdam

    Google Scholar 

  • Butterfield SM and Waters ML (2003) A designedhairpin peptide for molecular recognition of ATP in water. J Am Chem Soc 125: 9580–9581

    PubMed  CAS  Google Scholar 

  • Chen M, Eggink LL, Hoober JK and Larkum AW (2005) Influence of structure on binding of chlorophylls to peptide ligands. J Am Chem Soc 127: 2052–2053

    PubMed  CAS  Google Scholar 

  • Cochran FV, Wu SP, Wang W, Nanda V, Saven JG, Therien MJ and DeGrado WF (2005) Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor. J Am Chem Soc 127: 1346–1347

    PubMed  CAS  Google Scholar 

  • Coleman WJ and Youvan DC (1990) Spectroscopic analysis of genetically modified photosynthetic reaction centers. Ann Rev Biophys (Biophys Chem.) 19: 333–367

    Google Scholar 

  • Davis CM, Parkes-Loach PS, Cook CK, Meadows KA, Bandilla M, Scheer H and Loach PA (1996) Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodobacter sphaeroides using reconstitution methodology with bacteriochlorophyll analogs. Biochemistry 35: 3072–3084

    PubMed  CAS  Google Scholar 

  • De Jonge N, Rau HK and Haehnel W (1999) Light-induced electron transfer in synthetic metalloproteins. Z Phys Chem 213: 175–180

    Google Scholar 

  • DeGrado WF, Wasserman ZR and Lear JD (1989) Protein design, a minimalist approach. Science 243: 622–628

    PubMed  CAS  Google Scholar 

  • Dieckmann GR, McRorie DK, Tierney DL, Utschig LM, Singer CP, O’Halloran TV Penner-Hahn JE, DeGrado WF and Pecoraro VL (1997) De novo design of mercury-binding two- and threehelical bundles. J Am Chem Soc 119: 6195–6196

    CAS  Google Scholar 

  • Discher BM, Noy D, Strzalka J, Ye S, Moser CC, Lear JD, Blasie JK and Dutton PL (2005) Design of amphiphilic protein maquettes: controlling assembly, membrane insertion, and cofactor interactions. Curr Op Chem Biol 44: 12329–12343

    CAS  Google Scholar 

  • Domanskii V, Rassadina V, Gus-Mayer S, Wanner G, Schoch S and Rüdiger W (2003) Characterization of two phases of chlorophyll formation during greening of etiolated barley leaves. Planta 216: 475–483

    PubMed  CAS  Google Scholar 

  • Dudkowiak A, Nakamura C, Arai T and Miyake J (1998) Interactions of chlorophyll a with synthesized peptide in aqueous solution. J Photochem Photobiol B 45: 43–50

    PubMed  CAS  Google Scholar 

  • Dudkowiak A, Kusumi T, Nakamura C and Miyake J (1999) Chlorophyll a aggregates stabilized by a synthesized peptide. J Photochem Photobiol. A 129: 51–55

    CAS  Google Scholar 

  • Eggink LL and Hoober JK (2000) Chlorophyll binding to peptide maquettes containing a retention motif. J Biol Chem 275: 9087–9090

    PubMed  CAS  Google Scholar 

  • El-Kabbani O, Chang C-H, Tiede D, Norris J and Schiffer M (1991) Comparison of reaction centers from Rhodobacter sphaeroides and Rhodopseudomonas viridis: Overall architecture and protein-pigment interactions. Biochemistry 30: 5361–5369

    PubMed  CAS  Google Scholar 

  • Evans TA and Katz JJ (1975) Evidence for 5-and 6-coordinated magnesium in bacteriochlorophyll a from visible absorption spectroscopy. Biochim Biophys Acta 396: 414–426

    PubMed  CAS  Google Scholar 

  • Fahnenschmidt M, Bittl R, Rau HK, Haehnel W and Lubitz W (2000) Electron paramagnetic resonance and electron nuclear double resonance spectroscopy of a heme protein maquette. Chem Phys Lett 323: 329–339

    CAS  Google Scholar 

  • Fahnenschmidt M, Rau HK, Bittl R, Haehnel W and Lubitz W (1999) Characterization of a de novo designed heme protein by EPR and ENDOR spectroscopy. Chem Eur J 5: 2327–2334

    CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838

    PubMed  CAS  Google Scholar 

  • Fiedor L (2006) Hexacoordination of bacteriochlorophyll in photosynthetic antenna LH1. Biochemistry 45: 1910–1918

    PubMed  CAS  Google Scholar 

  • Fiedor L, Leupold D, Teuchner K, Voigt B, Hunter CN, Scherz A and Scheer H (2000) Excitation trap approach to analyze size and pigment-pigment coupling: Reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll. Biochemistry 40: 3737–3747.

    Google Scholar 

  • Frank HA, Innes J, Aldema M, Neumann R and Schenck CC (1993) Triplet state EPR of reaction centers from the His(L173) → Leu(L 173) mutant of Rhodobacter sphaeroides which contains a heterodimer primary donor. Photosynth. Res. 38: 99–101.

    CAS  Google Scholar 

  • Freer A, Prince S, Sauer K, Papiz M, Hawthornthwaite-Lawless A, McDermott G, Cogdell R and Isaacs NW (1996) Pigment, pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure 4: 449–462

    PubMed  CAS  Google Scholar 

  • Frigaard NU, Chew AGM, Maresca JA and Bryant DA (2006) Bacteriochlorophyll biosynthesis in green bacteria. In: Grimm B, Porra R, Rüdiger W and Scheer H (eds) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Advances in Photosynthesis and Respiration, Vol 25), pp 201–221. Springer, Dordrecht

    Google Scholar 

  • Gall A, Cogdell RJ and Robert B (2003) Influence of carotenoid molecules on the structure of the bacteriochlorophyll binding site in peripheral light-harvesting proteins from Rhodobacter sphaeroides. Biochemistry 42: 7252–8

    PubMed  CAS  Google Scholar 

  • Garcia-Martin A, Kwa L, vonJan M and Braun P (2006) Assembly of novel bacteriochlorophyll proteins in the native lipid environment. In: Grimm B, Porra R, Rüdiger W and Scheer H (eds) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Advances in Photosynthesis and Respiration, Vol 25), pp 387–396. Springer, Dordrecht

    Google Scholar 

  • Gentemann S, Medforth CJ, Forsyth TP, Nurco DJ, Smith KM, Fajer J and Holten D (1994) Photophysical properties of conformationally distorted metal-free porphyrins. Investigation into the deactivation mechanisms of the lowest excited singlet state. J Am Chem Soc 116: 7363–7368

    CAS  Google Scholar 

  • Ghirlanda G, Osyczka A, Liu W, Antolovich M, Smith KM, Dutton PL, Wand AJ and DeGrado WF (2004) De novo design of a D 2-symmetrical protein that reproduces the diheme four-helix bundle in cytochrome bc 1 J Am Chem Soc 126: 8141–8147

    PubMed  CAS  Google Scholar 

  • Ghosh D, Lee KH, Demeler B and Pecoraro VL (2005) Linear free-energy analysis of mercury(II) and cadmium(II) binding to three-stranded coiled coils. Biochemistry 44: 10732–10740

    PubMed  CAS  Google Scholar 

  • Gibney BR, Mulholland SE, Rabanal F and Dutton PL (1996) Ferredoxin and ferredoxin-heme maquettes. Proc Natl Acad Sci USA 93: 15041–15046

    PubMed  CAS  Google Scholar 

  • Gibney BR, Rabanal F, Skalicky JJ, Wand AJ and Dutton PL (1999) Iterative protein redesign. J Am Chem Soc 121: 4952–4960

    CAS  Google Scholar 

  • Gibney BR, Isogai Y, Rabanal F, Reddy KS, Grosset AM, Moser CC and Dutton PL (2000) Self-assembly of heme A and heme B in a designed four-helix bundle: Implications for a cytochrome c oxidase maquette. Biochemistry 39: 11041–11049

    PubMed  CAS  Google Scholar 

  • Grosset AM, Gibney BR, Rabanal F, Moser CC and Dutton PL (2001) Proof of principle in a de novo designed protein maquette: An allosterically regulated, charge-activated conformational switch in a tetra-alpha-helix bundle. Biochemistry 40: 5474–5487

    PubMed  CAS  Google Scholar 

  • Gudowska-Nowak E, Newton MD and Fajer J (1990) Conformational and environmental effects on bacteriochlorophyll optical spectra: Correlations of calculated spectra with structural results. J Phys Chem 94: 5795–5801

    CAS  Google Scholar 

  • Haehnel W (2004) Chemical synthesis of TASP-arrays and their application in protein design. Mol Diversity 8: 219–229

    CAS  Google Scholar 

  • Harbury PB, Zhang T, Kim PS and Alber T (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262: 1401–1407

    PubMed  CAS  Google Scholar 

  • Hartwich G, Fiedor L, Simonin I, Cmiel E, Schaefer W, Noy D, Scherz A and Scheer H (1998) Metal-substituted bacteriochlorophylls. 1. Preparation and influence of metal and coordination on spectra. J Am Chem Soc 120: 3675–3683

    CAS  Google Scholar 

  • Ho SP and DeGrado WF (1987) Design of a 4-helix bundle protein: Synthesis of peptides which self-associate into a helical protein. J Am Chem Soc 109: 6751–6758

    CAS  Google Scholar 

  • Hofmann E, Wrench PM, Sharpies FP, Hiller RG, Weite W and Diederichs K (1996) Structural basis of light-harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788–1791

    PubMed  CAS  Google Scholar 

  • Horigome D, Satoh H, Itoh N, Mitsunaga K, Oonishi I, Nakagawa A and Uchida A (2007) Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein. J Biol Chem 282: 76525–6531

    Google Scholar 

  • Huang SS, Gibney BR, Stayrook SE, Dutton PL and Lewis M (2003) X-ray structure of a maquette scaffold. J Mol Biol 326: 1219–1225

    PubMed  CAS  Google Scholar 

  • Huang SS, Koder RL, Lewis M, Wand AJ and Dutton PL (2004) The HP-1 maquette: From an apoprotein to a structured hemoprotein designed to promote redox-coupled proton exchange. Proc Natl Acad Sci USA 101: 5536–5541

    PubMed  CAS  Google Scholar 

  • Hübschmann T, Borner T, Hartmann E and Lamparter T (2001) Characterization of the Cph 1 holo-phytochrome from Synechocystis sp. PCC 6803. Eur J Biochem 268: 2055–2063

    PubMed  Google Scholar 

  • Ivancich A, Artz K, Williams JC, Allen JP and Mattioli TA (1998) Effects of hydrogen bonds on the redox potential and electronic structure of the bacterial primary electron donor. Biochemistry 37: 11812–11820

    PubMed  CAS  Google Scholar 

  • Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S and Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc 1 complex. Science 281: 64–71

    PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411: 909–917

    PubMed  CAS  Google Scholar 

  • Kashiwada A, Watanabe H, Tanaka T and Nango M (2000) Molecular assembly of zinc bacteriochlorophyll a by synthetic hydrophobic 1α-helix polypeptides. Chem Lett 24–25

    Google Scholar 

  • Katz E, Heleg-Shabtai V, Willner I, Rau HK and Haehnel W (1998) Surface reconstitution of a de novo synthesized hemoprotein for bioelectronic applications. Angew Chem Int Ed 37: 3253–3256

    CAS  Google Scholar 

  • Katz JJ, Shipman LL, Cotton TM and Janson TR (1978) Chlorophyll aggregation: coordination interactions in chlorophyll monomers, dimers and oligomers. In: Dolphin D (ed) The Porphyrins. Physical Chemistry, Part C, pp 402–458. Academic Press, New York

    Google Scholar 

  • Katz JJ, Bowman MK, Michalski TJ and Worcester DL (1991) Chlorophyll aggregation: Chlorophyll-water micelles as models for in vivo long-wavelength chlorophyll. In: Scheer H (ed) Chlorophylls, pp 211–236. CRC-Press, Boca Raton

    Google Scholar 

  • Kennedy ML and Gibney BR (2002) Proton coupling to [4Fe-4S]2+ and [4Fe-4Se]2+ oxidation and reduction in a designed protein. J Am Chem Soc 124: 6826–6827

    PubMed  CAS  Google Scholar 

  • Klemba M, Gardner KH, Marino S, Clarke ND and Regan L (1995) Novel metal-binding proteins by design. Nature Struct Biol 2: 368–373

    PubMed  CAS  Google Scholar 

  • Koder RL and Dutton PL (2006) Intelligent design: The de novo engineering of proteins with specified functions. Dalton Transact 25: 3045–3051

    Google Scholar 

  • Koder RL, VKG, Cerda J, Noy D, Smith KM, Wand AJ and Dutton PL (2006) Native-like structure in designed four α-helix bundles driven by buried polar interactions. J Am Chem Soc 128: 14450–14451

    PubMed  CAS  Google Scholar 

  • Kräutler B and Hörtensteiner S (2006) Chlorophyll catabolites and the biochemistry of chlorophyll breakdown. In: Grimm B, Porra R, Rüdiger W and Scheer H (eds) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Advances in Photosynthesis and Respiration, Vol 25), pp 237–260. Springer, Dordrecht

    Google Scholar 

  • Kunieda M, Mizoguchi T and Tamiaki H (2004) Diastereoselective self-aggregation of synthetic 3-(1-hydroxyethyl)-bacteriopyrochlophyll a as a novel photosynthetic antenna model absorbing near the infrared regions. Photochem Photobiol 79: 55–61

    PubMed  CAS  Google Scholar 

  • Küpper H, Dedic R, Svoboda A, Hala J and Kroneck PM (2002) Kinetics and efficiency of excitation energy transfer from chlorophylls, their heavy metal-substituted derivatives, and pheophytins to singlet oxygen. Biochim Biophys Acta 1572: 107–113

    PubMed  Google Scholar 

  • Lapouge K, Näveke A, Sturgis JN, Hartwich G, Renaud D, Simonin I, Lutz M, Scheer H and Robert B (1998) Non-bonding molecular factors influencing the stretching wavenumbers of the conjugated carbonyl groups of bacteriochlorophyll a. J Raman Spectrosc 29: 977–981

    CAS  Google Scholar 

  • Lear JD, Wasserman ZR and Degrado WF (1988) Synthetic amphiphilic peptide models for protein ion channels. Science 240: 1177–1181

    PubMed  CAS  Google Scholar 

  • Li WW, Hellwig P, Ritter M and Haehnel W (2006) De novo design, synthesis, and characterization of quinoproteins. Chem Eur J 12: 7236–7245

    CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428: 287–292

    PubMed  CAS  Google Scholar 

  • Lutz M and Mäntele W (1991) Vibrational spectroscopy of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 855–902. CRC Press, Boca Raton, FL

    Google Scholar 

  • Ma JG, Zhang J, Franco R, Jia SL, Moura I, Moura JJG, Kroneck PMH and Shelnutt JA (1998) The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c 3. Biochemistry 37: 12431–12442

    PubMed  CAS  Google Scholar 

  • Macpherson A and Hiller R (2003) Light-harvesting Systems in Chl c-containing Algae. In: Green B and Parson W (eds) Light-Harvesting Antennas in Photosynthesis (Advances in Photosynthesis and Respiration, Vol 13), pp 323–352. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Maglio O, Nastri F, Pavone V, Lombardi A and DeGrado WF (2003) Preorganization of molecular binding sites in designed diiron proteins. Proc Natl Acad Sci USA 100: 3772–3777

    PubMed  CAS  Google Scholar 

  • Markovic D, Pröll S and Scheer H (2007) Thermal unfolding of myoglobin: Influence of chromophore structure on stability. Biochim Biophys Acta 1767: 897–904

    PubMed  CAS  Google Scholar 

  • Marsh EN and DeGrado WF (2002) Noncovalent self-assembly of a heterotetrameric diiron protein. Proc Natl Acad Sci USA 99: 5150–5154

    PubMed  CAS  Google Scholar 

  • Masuda T, Inoue K, Masuda M, Nagayama M, Tamaki A, Ohta H, Shimada H and Takamiya K (1999) Magnesium insertion by magnesium chelatase in the biosynthesis of zinc bacteriochlorophyll a in an aerobic acidophilic bacterium Acidiphilium rubrum. J Biol Chem 274: 33594–33600

    PubMed  CAS  Google Scholar 

  • McLuskey K, Prince SM, Cogdell RJ and Isaacs NW (1999) Crystallization and preliminary X-ray crystallographic analysis of the B800-820 light-harvesting complex from Rhodopseudomonas acidophila strain 7050. Acta Cryst D Biol Cryst 55: 885–887

    CAS  Google Scholar 

  • Meadows KA, Iida K, Tsuda K, Recchia PA, Heller BA, Antonio B, Nango M and Loach PA (1995) Enzymatic and chemical cleavage of the core light-harvesting polypeptides of photosynthetic bacteria: Determination of the minimal polypeptide size and structure required for subunit and light-harvesting complex formation. Biochemistry 35: 1559–1574

    Google Scholar 

  • Medforth CJ, Senge MO, Smith KM, Sparks LD and Shelnutt JA (1992) Nonplanar distortion modes for highly substituted porphyrins. J Amer Chem Soc 114: 9859–9869

    CAS  Google Scholar 

  • Mennenga A, Gärtner W, Lubitz W and Gorner H (2006) Effects of noncovalently bound quinones on the ground and triplet states of zinc chlorins in solution and bound to de novo synthesized peptides. Phys Chem Chem Phys 8: 5444–5453

    PubMed  CAS  Google Scholar 

  • Michel H, Epp O and Deisenhofer J (1986) Pigment protein interactions in the photosynthetic reaction center from Rhodopseudomonas viridis. EMBO J 5: 2445–2451

    PubMed  CAS  Google Scholar 

  • Miyake J, Kusumi T, Dudkowiad A, Goc J and Frackowiak D (1998) The interactions between bacteriochlorophyll c and amphiphilic peptides. J Photochem Photobiol A 116: 147–151

    CAS  Google Scholar 

  • Moog RS, Kuki A, Fayer MD and Boxer SG (1984) Excitation transport and trapping in a synthetic chlorophyllide substituted hemoglobin: Orientation of the chlorophyll S1 transition dipole. Biochemistry 23: 1564–1571

    PubMed  CAS  Google Scholar 

  • Mulholland SE, Gibney BR, Rabanal F and Dutton PL (1998) Characterization of the fundamental protein ligand requirements of [4Fe-4S]2+ clusters with sixteen amino acid maquettes. J Am Chem Soc 120: 10296–10302

    CAS  Google Scholar 

  • Mulholland SE, Gibney BR, Rabanal F and Dutton PL (1999) Determination of nonligand amino acids critical to [4Fe-4S]2+ assembly in ferredoxin maquettes. Biochemistry 38: 10442–10448

    PubMed  CAS  Google Scholar 

  • Musewald C, Hartwich G, Lossau H, Gilch P, Pöllinger-Dammer F, Scheer H and Michel-Beyerle ME (1999) Ultrafast photophysics and photochemistry of [Ni]-bacteriochlorophyll a. J Phys Chem B 103: 7055–7060

    CAS  Google Scholar 

  • Mutter M and Vuilleumier S (1989) A chemical approach to protein design — template assembled synthetic proteins (DASP). Angew Chem Int Ed 28: 535–554

    Google Scholar 

  • Nanda V, Rosenblatt MM, Osyczka A, Kono H, Getahun Z, Dutton PL, Saven JG and DeGrado WF (2005) De novo design of a redox-active minimal rubredoxin mimic. J Am Chem Soc 127: 5804–5805

    PubMed  CAS  Google Scholar 

  • Nango M (2006) Molecular assembly of bacteriochlorophyll complexes using synthetic light-harvesting (LH) model polypeptides. In: Grimm B, Porra R, Rüdiger W and Scheer H (eds) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Advances in Photosynthesis and Respiration, Vol 25), pp 365–373. Springer, Dordrecht

    Google Scholar 

  • Nicholson DW and Thornberry NA (2003) Apoptosis. Life and death decisions. Science 299: 214–215

    PubMed  CAS  Google Scholar 

  • Nishimura K, Kim SG, Zhang L and Cross TA (2002) The closed state of a H+ channel helical bundle combining precise orientational and distance restraints from solid state NMR. Biochemistry 41: 13170–13177

    PubMed  CAS  Google Scholar 

  • Noguchi T, Kamimura Y, Inoue Y and Itoh S (1999) Photoconversion of awater-soluble chlorophyll protein from Chenopodium album: Resonance Raman and Fourier transform infrared study of protein and pigment structures. Plant Cell Physiol 40: 305–310

    CAS  Google Scholar 

  • Noy D and Dutton PL (2006) Design of a minimal polypeptide unit for bacteriochlorophyll binding and self-assembly based on photosynthetic bacterial light-harvesting proteins. Biochemistry 45: 2103–2113

    PubMed  CAS  Google Scholar 

  • Noy D, Fiedor L, Hartwich G, Scheer H and Scherz A (1998) Metal-substituted bacteriochlorophylls. 2. Changes in redox potentials and electronic transition energies are dominated by intramolecular electrostatic interactions. J Am Chem Soc 120: 3684–3693

    CAS  Google Scholar 

  • Noy D, Yerushalmi R, Brumfeld V, Ashur I, Scheer H, Baldridge KK and Scherz A (2000) Optical absorption and computational studies of [Ni]-Bacteriochlorophyll a. New insight into charge distribution between metal and ligands. J Am Chem Soc 122: 3937–3944

    CAS  Google Scholar 

  • Noy D, Discher BM, Rubtsov IV, Hochstrasser RM and Dutton PL (2005) Design of amphiphilic protein maquettes: Enhancing maquette functionality through binding of extremely hydrophobic cofactors to lipophilic domains. Biochemistry 44: 12344–12354

    PubMed  CAS  Google Scholar 

  • Oba T and Tamiaki H (1999) Why do chlorosomal chlorophylls lack the C132-methoxycarbonyl moiety? An in vitro model study. Photosynth Res 61: 23–31

    CAS  Google Scholar 

  • Olsen JD, Sturgis JN, Westerhuis WH, Fowler GJ, Hunter CN and Robert B (1997) Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides. Biochemistry 36: 12625–32

    PubMed  CAS  Google Scholar 

  • Paulsen H (2006) Reconstitution and pigment exchange. In: Grimm B, Porra R, Rüdiger W and Scheer H (eds) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Advances in Photosynthesis and Respiration, Vol 25), pp 375–385. Springer, Dordrecht

    Google Scholar 

  • Paulsen H and Kuttkat A (1993) Pigment complexes of light-harvesting chlorophyll a/b binding protein are stabilized by a segment in the carboxyterminal hydrophilic domain of the protein. Photochem Photobiol 57: 139–142

    PubMed  CAS  Google Scholar 

  • Pearlstein RM, Davis RC and Ditson SL (1982) Giant circular dichroism of high molecular-weight chlorophyllide-apomyoglobin complexes. Proc Natl Acad Sci USA 79: 400–402

    PubMed  CAS  Google Scholar 

  • Rabanal F, DeGrado WF and Dutton PL (1996) Toward the synthesis of a photosynthetic reaction center maquette: A cofacial porphyrin pair assembled between two subunits of a synthetic four-helix bundle multiheme protein. J Am Chem Soc 118: 473–474

    CAS  Google Scholar 

  • Rau HK and Haehnel W (1996) Biomimetic constructs: de-novo design of redox proteins. Ber Bunsenges Phys Chem 100: 2052–2056

    CAS  Google Scholar 

  • Rau HK and Haehnel W (1998) Design, synthesis, and properties of a novel cytochrome b model. J Am Chem Soc 120: 468–476

    CAS  Google Scholar 

  • Rau HK, DeJonge N and Haehnel W (1998) Modular synthesis of de novo-designed metalloproteins for light-induced electron transfer. Proc Natl Acad Sci USA 95: 11526–11531

    PubMed  CAS  Google Scholar 

  • Rau HK, DeJonge N and Haehnel W (2000) Combinatorial synthesis of four-helix bundle hemoproteins for tuning of cofactor properties. Angew Chem Int Ed 39: 250–253

    CAS  Google Scholar 

  • Rau HK, Snigula H, Struck A, Robert B, Scheer H and Haehnel W (2001) Design, synthesis and properties of synthetic chlorophyll proteins. Eur J Biochem 268: 3284–3295

    PubMed  CAS  Google Scholar 

  • Razeghifard AR and Wydrzynski T (2003) Binding of Zn-chlorin to a synthetic four-helix bundle peptide through histidine ligation. Chem Lett 42: 1024–1030

    CAS  Google Scholar 

  • Regan L and DeGrado WF (1988) Characterization of a helical protein designed from first principles. Science 241: 976–978

    PubMed  CAS  Google Scholar 

  • Reinbothe C, Satoh H, Alcaraz J-P and Reinbothe S (2004) A novel role of water-soluble chlorophyll proteins in the transitory storage of chlorophyllide. Plant Physiol 134: 1355–1365

    PubMed  CAS  Google Scholar 

  • Robert B (1996) Resonance Raman studies in photosynthesischlorophyll and carotenoid molecules. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis (Advances in Photosynthesis and Respiration,Vol 3), pp 161–176. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Robert B, Cogdell R and Van Grondelle R (2003) The light-harvesting system of purple bacteria. In: Green B and Parson W (eds) Light-Harvesting Antennas in Photosynthesis (Advances in Photosynthesis and Respiration, Vol 13), pp 169–194. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Robertson DE, Farid RS, Moser CC, Urbauer JL, Mulholland SE, Pidikiti R, Lear JD, Wand AJ, DeGrado WF and Dutton PL (1994) Design and synthesis of multi-haem proteins. Nature 368: 425–431

    PubMed  CAS  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW and Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302: 1969–1972

    PubMed  CAS  Google Scholar 

  • Rüdiger W (2006) Biosynthesis of chlorophylls a and b: The Last Steps. In: Grimm B, Porra R, Rüdiger W and Scheer H (eds) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Advances in Photosynthesis and Respiration, Vol 25), pp 189–200. Springer, Dordrecht

    Google Scholar 

  • Scheer H (2003) The pigments. In: Green B and Parson W (eds) Green B and Parson W (eds) Light-Harvesting Antennas in Photosynthesis (Advances in Photosynthesis and Respiration, Vol 13), pp 29–81. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Scheer H (2006) Overview. In: Grimm B, Porra R, Rüdiger W and Scheer H (eds) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Advances in Photosynthesis and Respiration, Vol 25), pp 1–26. Springer, Dordrecht

    Google Scholar 

  • Scheer H and Hartwich G (1995) Bacterial reaction centers with modified tetrapyrrole chromophores. In: Blankenship R, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 649–663. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Scheer H and Katz JJ (1975) Nuclear magnetic resonance spectroscopy of porphyrins and metalloporphyrins. In: Smith KM (ed) Porphyrins and Metalloporphyrins, pp 399–524, Elsevier, New York

    Google Scholar 

  • Scheer H, Paulke B and Gottstein J (1985) Long-wavelength absorbing forms of bacteriochlorophylls. II. Structural requirements for formation in Triton X-100 micelles and in aqueous methanol and acetone. In: Blauer G and Sund H (eds) Optical Properties and Structure of Tetrapyrroles, pp 507–521. De Gruyter, London

    Google Scholar 

  • Scherz A and Parson WW (1986) Interactions of the bacteriochlorophylls in antenna bacteriochlorophyll-protein complexes of photosynthetic bacteria. Photosynth Res 9: 21–32

    CAS  Google Scholar 

  • Scherz A, Rosenbach-Belkin V, Michalski TJ and Worcester DL (1991) Chlorophyll aggregates in aqueous solutions. In: Scheer H (ed) Chlorophylls, pp 237–268. CRC-Press, Boca Raton

    Google Scholar 

  • Schlichter J, Friedrich J, Parbel M and Scheer H (2001) Influence of isotopic substitution on the conformational dynamics of frozen proteins. J Chem Phys 114: 9638–9644

    CAS  Google Scholar 

  • Schmidt K, Fufezan C, Krieger-Liszkay A, Satoh H and Paulsen H (2003) Recombinant water-soluble chlorophyll protein from Brassica oleracea var. Botrys binds various chlorophyll derivatives. Biochemistry 42: 7427–7433

    PubMed  CAS  Google Scholar 

  • Schnepf R, Horth P, Bill E, Wieghardt K, Hildebrandt P and Haehnel W (2001) De novo design and characterization of copper centers in synthetic four-helix-bundle proteins. J Am Chem Soc 123: 2186–95

    PubMed  CAS  Google Scholar 

  • Schoch S and Brown J (1986) The action of chlorophyllase on chlorophyll-protein complexes. J Plant Physiol 126: 483–494

    Google Scholar 

  • Senge MO (2000) Highly substituted porphyrins. In: Kadish KM, Smith KM, and Guilard R (eds) The Porphyrin Handbook, pp 239–347. Academic Press, San Diego

    Google Scholar 

  • Senge MO and Smith KM (1994) Structure and conformation of photosynthetic pigments and related compounds. 7. On the conformation of the methyl ester of (20-methyl-phytochlorinato) nickel(II) — A bacteriochlorophyll c model compound. Photochem Photobiol 60: 139–142

    PubMed  CAS  Google Scholar 

  • Senge MO, Kalisch WW and Runge S (1998) Conformationally distorted chlorins via diimide reduction of nonplanar porphyrins. Tetrahedron 54: 3781–3798

    CAS  Google Scholar 

  • Senge MO, Wiehe A and Ryppa C (2006) Synthesis, reactivity and structure of chlorophylls. In: Grimm B, Porra R, Rüdiger W and Scheer H (eds) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Advances in Photosynthesis and Respiration, Vol 25), pp 27–37. Springer, Dordrecht

    Google Scholar 

  • Sharp RE, Diers JR, Bocian DF and Dutton PL (1998a) Differential binding of iron(III) and zinc(II) protoporphyrin IX to synthetic four-helix bundles. J Am Chem Soc 120: 7103–7104

    CAS  Google Scholar 

  • Sharp RE, Moser CC, Rabanal F and Dutton PL (1998b) Design, synthesis, and characterization of a photoactivatable flavocytochrome molecular maquette. Proc Natl Acad Sci USA 95: 10465–10470

    PubMed  CAS  Google Scholar 

  • Shifman JM, Moser CC, Kalsbeck WA, Bocian DF and Dutton PL (1998) Functionalized de novo designed proteins: Mechanism of proton coupling to oxidation/reduction in heme protein maquettes. Biochemistry 37: 16815–16827

    PubMed  CAS  Google Scholar 

  • Shifman JM, Gibney BR, Sharp RE and Dutton PL (2000) Heme redox potential control in de novo designed four-α-helix bundle proteins. Biochemistry 39: 14813–14821

    PubMed  CAS  Google Scholar 

  • Skalicky JJ, Gibney BR, Rabanal F, Bieber Urbauer RJ, Dutton PL and Wand AJ (1999) Solution Structure of a Designed Four-α-Helix Bundle Maquette Scaffold. J Am Chem Soc 121: 4941–4951

    CAS  Google Scholar 

  • Snigula H (2004) (Bacterio)Chlorophyll-Modifikationen zur Einlagerung in synthetische Peptide. Dissertation, Ludwig-Maximilians-Universität, München

    Google Scholar 

  • Sparks LD, Medforth CJ, Park M-S, Chamberlain JR, Ondrias MR, Senge MO, Smith KM and Shelnutt JA (1993) Metal dependence of the nonplanar distortion of octaalkyltetra-phenylporphyrins. J Amer Chem Soc 115: 581–591

    CAS  Google Scholar 

  • Spiedel D, Roszak AW, McKendrick K, McAuley KE, Fyfe PK, Nabedryk E, Breton J, Robert B, Cogdell RJ, Isaacs NW and Jones MR (2002) Tuning of the optical and electrochemical properties of the primary donor bacteriochlorophylls in the reaction centre from Rhodobacter sphaeroides: Spectroscopy and structure. Biochim Biophys Acta 1554: 75–93

    PubMed  CAS  Google Scholar 

  • Standfuss J, Terwisscha van Scheftinga AC, Lamborghini M and Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24: 919–928

    PubMed  CAS  Google Scholar 

  • Sturgis JN, Jirsakova V, Reiss-Husson F, Cogdell RJ and Robert B (1995) Structure and properties of the bacteriochlorophyll binding site in peripheral light-harvesting complexes of purple bacteria. Biochemistry 34: 517–23

    PubMed  CAS  Google Scholar 

  • Summa CM, Rosenblatt MM, Hong JK, Lear JD and DeGrado WF (2002) Computational de novo design, and characterization of an A2B2 diiron protein. J Mol Biol 321: 923–938

    PubMed  CAS  Google Scholar 

  • Tronrud DE and Matthews BW (1993) Refinement of the structure of a water-soluble antenna complex from green photosynthetic bacteria by incorporation of the chemically determined amino acid sequence. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center, pp 13–22. Academic Press, New York

    Google Scholar 

  • Vavilin D, Xu H, Lin S and Vermaas W (2003) Energy and electron transfer in Photosystem II of a chlorophyll b-containing Synechocystis sp. PCC 6803 mutant. Biochemistry 42: 1731–1746

    PubMed  CAS  Google Scholar 

  • Walter E, Schreiber J, Zass E and Eschenmoser A (1979) Bakteriochlorophyll a GG und Bakteriophäophytin ap in den photosynthetischen Reaktionszentren von Rhodospirillum rubrum G9. Helv Chim Acta 62: 899–920

    CAS  Google Scholar 

  • Willner I, Heleg-Shabtai V, Katz E, Rau HK and Haehnel W (1999) Integration of a reconstituted de novo synthesized hemoprotein and native metalloproteins with electrode supports for bioelectronic and bioelectrocatalytic applications. J Am Chem Soc 121: 6455–6468

    CAS  Google Scholar 

  • Woodward RB, Ayer WA, Beaton JM, Bickelhaupt F, Bonnett R, Buchschacher P, Closs GL, Dutler H, Hannah J, Hauck FP, Ito S, Langemann A, LeGoff E, Leimgruber W, Lwowski W, Sauer J, Valenta Z and Voltz H (1960) The total synthesis of chlorophyll. J Amer Chem Soc 82: 3800–3802

    CAS  Google Scholar 

  • Wright KA and Boxer SG (1981) Solution properties and synthetic chlorophyllide-apomyoglobin and bacteriochlorophyllide-apomyoglobin complexes. Biochemistry 20: 7546–7556

    PubMed  CAS  Google Scholar 

  • Yeates TO, Komiya H, Chirino A, Rees DC, Allen JP and Feher G (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1 : Protein-cofactor (bacteriochlorophyll, bacteriopheophytin and carotenoid) interactions. Proc Natl Acad Sci USA 85: 7993–7997

    PubMed  CAS  Google Scholar 

  • Yerushalmi R, Ashur I and Scherz A (2006) Metal-substituted bacteriochlorophylls: novel molecular tools. In: Grimm B, Porra R, Rüdiger W and Scheer H (eds) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Advances in Photosynthesis and Respiration, Vol 25), pp 495–506. Springer, Dordrecht

    Google Scholar 

  • Zhang Z, Huang L, Shulmeister VM, Chi Y-I, Kim KK, Hung L-W, Crofts AR, Berry EA and Kim S-H (1998) Electron transfer by domain movement in cytochrome bc 1 Nature 392: 677–684

    PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Scheer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Haehnel, W., Noy, D., Scheer, H. (2009). De novo Designed Bacteriochlorophyll-Binding Helix-Bundle Proteins. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_45

Download citation

Publish with us

Policies and ethics