Regulation of the Tetrapyrrole Biosynthetic Pathway

  • Jill Helen Zeilstra-Ryalls
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 28)


This chapter describes what is known, or can be deduced from genomic analyses, about transcriptional regulation of the tetrapyrrole biosynthesis genes in purple anoxygenic photosynthetic bacteria. The major emphasis is on describing regulatory events that occur when oxygen levels change, as it is a key parameter controlling the expression of these genes. An overview of the common biosynthetic pathway is followed by a comparative description of the known regulatory features about each gene in Rhodobacter (Rba.) sphaeroides and Rba. capsulatus, the two purple anoxygenic photosynthetic bacteria in which this topic has been investigated most extensively. Finally, the information available for the Rhodobacter species is used to explore the DNA sequence databases for other bacteria belonging to this group. First, the results of a survey of the DNA sequences for genes encoding the key regulatory proteins are presented. Second, the tetrapyrrole biosynthesis genes in the sequenced strains of the purple anoxygenic photosynthetic bacteria are identified, and the outcome of an inspection of their upstream sequences for the presence of any known target sequences representing DNA binding sites for the regulatory proteins are presented. While the significance of the regulatory sequences will require experimental determination, a number of conclusions can be made as to the distribution of the regulatory proteins and the tetrapyrrole biosynthesis genes among these bacteria.


Upstream Sequence Rhodobacter Sphaeroides Rhodobacter Capsulatus Photosynthesis Gene Tetrapyrrole Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





5-aminolevulinic acid


























Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthony J, Warczak K and Donohue T (2005) A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis. Proc Natl Acad Sci USA 102: 6502–6507PubMedCrossRefGoogle Scholar
  2. Beale SI and Weinstein JD (1991) 2.2 Biosynthesis of 5-aminolevulinic acid in phototrophic organisms. In: Scheer H (ed) Chlorophylls. pp 385–406 CRC Press, Inc., Boca RatonGoogle Scholar
  3. Biel A, Canada K, Huang D, Indest K and Sullivan K (2002) Oxygen-mediated regulation of porphobilinogen formation in Rhodobacter capsulatus. J Bacteriol 184: 1685–1692PubMedCrossRefGoogle Scholar
  4. Blankenship R, Madigan M and Bauer C (eds) (1995) Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, DordrechtGoogle Scholar
  5. Bollivar D, Suzuki J, Beatty J, Dobrowolski J and Bauer C (1994) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237: 622–640PubMedCrossRefGoogle Scholar
  6. Bollivar DW, Clauson C, Lighthall R, Forbes S, Kokona B, Fairman R, Kundrat L and Jaffe EK (2004) Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer. BMC Biochemistry 5: 17PubMedCrossRefGoogle Scholar
  7. Braatsch S, Moskvin O, Klug G and Gomelsky M (2004) Responses of the Rhodobacter sphaeroides transcriptome to blue light under semiaerobic conditions. J Bacteriol 186: 7726–7735PubMedCrossRefGoogle Scholar
  8. Breckau D, Mahlitz E, Sauerwald A, Layer G and Jahn D (2003) Oxygen-dependent coproporphyrinogen III oxidase (HemF) from Escherichia coli is stimulated by manganese. J Biol Chem 278: 46625–46631PubMedCrossRefGoogle Scholar
  9. Coomber SA, Jones RM, Jordan PM and Hunter CN (1992) A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. I. Molecular cloning, transposon mutagenesis and sequence analysis of the gene. Mol Microbiol 6: 3159–3169PubMedCrossRefGoogle Scholar
  10. Dong C, Elsen S, Swem L and Bauer C (2002) AerR, a second aerobic repressor of photosynthesis gene expression in Rhodobacter capsulatus. J Bacteriol 184: 2805–2814PubMedCrossRefGoogle Scholar
  11. Dubbs J and Tabita F (2003) Interactions of the cbb II promoteroperator region with CbbR and RegA (PrrA) regulators indicate distinct mechanisms to control expression of the two cbb opérons of Rhodobacter sphaeroides. J Biol Chem 278: 16443–16450PubMedCrossRefGoogle Scholar
  12. Elsen S, Swem L, Swem D and Bauer C (2004) RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol. and Mol Biol Reviews 68: 263–279CrossRefGoogle Scholar
  13. Elsen S, Jaubert M, Pignol D and Giraud E (2005) PpsR: A multifaceted regulator of photosynthesis gene expression in purple bacteria. Mol Microbiol 57: 17–26PubMedCrossRefGoogle Scholar
  14. Eraso JM and Kaplan S (1994) PrrA, a putative response regulator involved in oxygen regulation in photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol 176: 32–43PubMedGoogle Scholar
  15. Fales L, Kryszak L and Zeilstra-Ryalls J (2001) Control of hemA expression in Rhodobacter sphaeroides 2.4.1: Effect of a transposon insertion in the hbdA gene. J. Bacteriol. 183: 1568–1576PubMedCrossRefGoogle Scholar
  16. Fales L, Nogaj L and Zeilstra-Ryalls J (2002) Analysis of the upstream sequences of the Rhodobacter sphaeroides 2.4.1 hemA gene: In vivo evidence for the presence of two promoters that are both regulated by fnrL. Photosynthesis Research 74: 143–151PubMedCrossRefGoogle Scholar
  17. Fischer H-M (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol. Reviews 58: 352–386Google Scholar
  18. Gibson, LCD, Willows RD, Kannangara CG, von Wettstein D and Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of bchH, I, and D genes expressed in Escherichia coli. Proc Natl Acad Sci USA 92: 1941–1944PubMedCrossRefGoogle Scholar
  19. Giraud E, Fardoux J, Fourrier N, Hannibal L, Genty B, Bouyer P, Dreyfus B and Verméglio A (2002) Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature 417: 202–205PubMedCrossRefGoogle Scholar
  20. Gomelsky M and Kaplan S (1994) Identification of transcriptional factors involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. Abstracts of the VIII International Symposium on Phototrophic Prokaryotes. 41B: Sant’ Angelo in Vado, Italy: Tipgrafia Grafica ValdeseGoogle Scholar
  21. Gomelsky M and Kaplan S (1997) Molecular genetic analysis suggesting interactions between AppA and PpsR in regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 179: 128–134PubMedGoogle Scholar
  22. Gomelsky L, Sram J, Moskvin OV, Horne IM, Dodd HN, Pemberton JM, McEwan AG, Kaplan S and Gomelsky M (2003) Identification and in vivo characterization of PpaA, a regulator of photosystem formation in Rhodobacter sphaeroides. Microbiology 149: 377–388PubMedCrossRefGoogle Scholar
  23. Gough S, Petersen B and Duus J (2000) Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. Proc Natl Acad Sci USA 97: 6908–6913PubMedCrossRefGoogle Scholar
  24. Happ H, Braatsch S, Broschek V, Osterloh L and Klug G (2005) Light-dependent regulation of photosynthesis genes in Rhodobacter sphaeroides 2.4.1 is coordinately controlled by photosynthetic electron transport via the PrrBA two-component system and the photoreceptor AppA. Mol Microbiol 58: 903–914PubMedCrossRefGoogle Scholar
  25. Haselkorn R, Lapidus A, Kogan Y, Vlcek C, Paces J, Paces V, Ulbrich P, Pecenkova T, Rebrekov D, Milgram A, Mazur M, Cox R, Kyrpides N, Ivanova N, Kapatral V, Los T, Lykidis A, Mikhailova N, Reznik G, Vasieva O and Fonstien M (2001) The Rhodobacter capsulatus genome. Photosynth Res 70: 43–52PubMedCrossRefGoogle Scholar
  26. Hiraishi A and Shimada K (2001) Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. J Gen Appl Microbiol 47: 161–180PubMedCrossRefGoogle Scholar
  27. Hornberger U, Liebetanz R, Tichy HV and Drews G (1990) Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a δ-aminolevulinic acid-dependent mutant strain. Mol. Gen. Genet. 221: 371–378PubMedCrossRefGoogle Scholar
  28. Horne I, Pemberton J and McEwan A (1996) Photosynthesis gene expression in Rhodobacter sphaeroides is regulated by redox changes which are linked to electron transport. Microbiology 142: 2831–2838Google Scholar
  29. Iida K and Kajiwara M (2000) Evaluation of biosynthetic pathways to S-aminolevulinic acid in Propionibacterium shermanii based on biosynthesis of vitamin B12 from D-[1-13C] glucose. Biochemistry 39: 3666–3670PubMedCrossRefGoogle Scholar
  30. Imhoff J and Madigan M (2004) Minutes: International committee on systematics of prokaryotes, subcommittee on the taxonomy of phototrophic bacteria. International Journal of Systematic and Evolutionary Microbiology 54: 1001–1003CrossRefGoogle Scholar
  31. Indest K and Biel AJ (1995) Nucleotide sequence of the Rhodobacter capsulatus hemB gene. Plant Physiol. 108: 1CrossRefGoogle Scholar
  32. Jaffe E (2003) An unusual phylogenetic variation in the metal ion binding sites of porphobilinogen synthase. Chemistry & Biology 10: 25–34CrossRefGoogle Scholar
  33. Jaubert M, Zappa S, Fardoux J, Adriano J-M, Hannibal L, Elsen S, Lavergne J, Verméglio A, Giraud E and Pignol D (2004) Light and redox control of photosynthesis gene expression in Bradyrhizobium. Dual roles of two PpsR. J Biol Chem. 279: 44407–44416PubMedCrossRefGoogle Scholar
  34. Jordan P (ed) (1991) Biosynthesis of Tetrapyrroles. Elsevier, AmsterdamGoogle Scholar
  35. Joshi H and Tabita F (1996) A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc Natl Acad Sci USA 93: 14515–14520PubMedCrossRefGoogle Scholar
  36. Kiley P and Beinert H (1998) Oxygen sensing by the global regulator, Fnr; the role of the iron-sulfur cluster. FEMS Microbiol Rev 22: 341–352PubMedCrossRefGoogle Scholar
  37. Kovacs A, Rakhely G and Kovacs K (2005) The PpsR regulator family. Res Microbiol. 156: 619–625PubMedCrossRefGoogle Scholar
  38. Laguri C, Phillips-Jones M and Williamson M (2003) Solution structure and DNA binding of the effector domain from the global regulator PrrA (RegA) from Rhodobacter sphaeroides: Insights into DNA binding specificity. Nucleic Acids Research 31: 6778–6787PubMedCrossRefGoogle Scholar
  39. Lascelles J (1956) The synthesis of porphyrins and bacteriochlorophyll by cell suspensions of Rhodopseudomonas spheroides. Biochem J 62: 78–93PubMedGoogle Scholar
  40. Lascelles J (1964) Tetrapyrrole Biosynthesis and its Regulation. W A. Benjamin, Inc., New YorkGoogle Scholar
  41. Layer G, Moser J, Heinz D, Jahn D and Schubert W-D (2003) Crystal structure of the coproporphyrinogen III oxidase reveals cofactor geometry of radical SAM enzymes. EMBO Journal 22: 6214–6224PubMedCrossRefGoogle Scholar
  42. Layer G, Pierik AJ, Trost M, Rigby SE, Leech HK, Grage K, Breckau D, Astner I, Jansch L, Heathcote P, Warren MJ, Heinz DW and Jahn D (2006) The substrate radical of Escherichia coli oxygen-independent coproporphyrinogen III oxidase HemN. J BiolChem 281: 15727–15734Google Scholar
  43. Layer G, Verfurth K, Mahlitz E and Jahn D (2002) Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. J Biol Chem 277: 34136–34142PubMedCrossRefGoogle Scholar
  44. Lee D, Flachsova E, Bodnarova M, Demeler B, Martasek P and Raman C (2005) Structural basis of hereditary coproporphyria. Proc Natl Acad Sci USA 102: 14232–14237PubMedCrossRefGoogle Scholar
  45. Mackenzie C, Choudhary M, Larimer FW, Predki PF, Stilwagen S, Armitage JP, Barber RD, Donohue TJ, Hosler JP, Newman JE, Shapleigh JP, Sockett RE, Zeilstra-Ryalls J and Kaplan S (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth Res 70: 19–41PubMedCrossRefGoogle Scholar
  46. Mao L, Mackenzie C, Roh J, Eraso J, Kaplan S and Resat H (2005) Combining microarray and genomic data to predict DNA binding motifs. Microbiology 151: 3197–3213PubMedCrossRefGoogle Scholar
  47. Masuda, S, Matsumoto, Y, Nagashima, KVP, Shimada, K, Inoue, K, Bauer, CE and Matsuura, K (1999) Structural and functional analyses of photosynthetic regulatory genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans, and Rhodobacter capsulatus. J Bacteriol 181: 4205–4215PubMedGoogle Scholar
  48. Moskvin O, Gomelsky L and Gomelsky M (2005) Transcriptome analysis of the Rhodobacter sphaeroides PpsR regulon: PpsR as a master regulator of photosystem development. J Bacteriol 187: 2148–2156PubMedCrossRefGoogle Scholar
  49. Mouncey NJ and Kaplan S (1998a) Cascade regulation of dimethyl sulfoxide reductase (dor) gene expression in the facultative phototroph Rhodobacter sphaeroides 2.4.1T. J Bacteriol 180: 2924–2930PubMedGoogle Scholar
  50. Mouncey NJ and Kaplan S (1998b) Oxygen regulation of the ccoN gene encoding a component of the cbb 3 oxidase in Rhodobacter sphaeroides 2.4.1T: Involvement of the FnrL protein. J Bacteriol. 180: 2228–2231PubMedGoogle Scholar
  51. Neidle EL and Kaplan S (1993a) 5-aminolevulinic acid availability and control of spectral complex formation in HemA and HemT mutants of Rhodobacter sphaeroides. J Bacteriol 175: 2304–2313PubMedGoogle Scholar
  52. Neidle EL and Kaplan S (1993b) Expression of the Rhodobacter sphaeroides hemA and hemT genes, encodingtwo 5-aminolevulinic acid synthase isozymes. J Bacteriol 175: 2292–2303PubMedGoogle Scholar
  53. Nereng K and Kaplan S (1999) Genomic complexity among strains of the facultative photoheterotrophic bacterium Rhodobacter sphaeroides. J Bacteriol 181: 1684–1688PubMedGoogle Scholar
  54. O’Brian M and Thöny-Meyer L (2002) Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Adv Microb Physiol 46: 257–318PubMedCrossRefGoogle Scholar
  55. Oh J-I (2006) Effect of mutations of five conserved histidine residues in the catalytic subunit of the cbb 3 cytochrome c oxidase on its function. J Microbiol 44: 284–292PubMedGoogle Scholar
  56. Oh J-I, Eraso J and Kaplan S (2000) Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 182: 3081–3087PubMedCrossRefGoogle Scholar
  57. Oh J-I, Ko I-J and Kaplan S (2004) Reconstitution of the Rhodobacter sphaeroides cbb 3-PrrBA signal transduction pathway in vitro. Biochemistry 43: 7915–7923PubMedCrossRefGoogle Scholar
  58. Ouchane S, Picaud M, Therizols P, Reiss-Husson F, and Astier C (2007) Global regulation of photosynthesis and respiration by FnrL: The first two targets in the tetrapyrrole pathway. J Biol Chem 282: 7690–7699PubMedCrossRefGoogle Scholar
  59. Pappas CT, Sram J, Moskvin OV, Ivanov PS, MacKenzie RC, Choudhary M, Land ML, Larimer FW, Kaplan S and Gomelsky M (2004) Construction and validation of the Rhodobacter sphaeroides 2.4.1 DNA microarray: Transcriptome flexibility at diverse growth modes. J Bacteriol 186: 4748–4758PubMedCrossRefGoogle Scholar
  60. Petrícek M, Petríceková K, Havlícek L and Felsberg J (2006) Occurrence of two 5-amionolevulinate biosynthetic pathways in Streptomyces nodosus subsp. asukaensis is linked to the production of asukamycin. J Bacteriol 188: 5113–5123PubMedCrossRefGoogle Scholar
  61. Phillips JD, Whitby FG, Warby CA, Labbe P, Yang C, Pflugrath JW, Ferrara JD, Robinson H, Kushner JP and Hill CP (2004) Crystal structure of the oxygen-dependant coproporphyrinogen oxidase (Heml3p) of Saccharomyces cerevisiae. J Biol Chem 279: 38960–38968PubMedCrossRefGoogle Scholar
  62. Pinta V, Picaud M, Reiss-Husson F and Astier C (2002) Rubrivivax gelatinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J Bacteriol 184: 746–753PubMedCrossRefGoogle Scholar
  63. Ponnampalam S, Buggy J and Bauer C (1995) Characterization of an aerobic repressor that coordinately regulates bacteriochlorophyll, carotenoid, and light harvesting-II expression in Rhodobacter capsulatus. J Bacteriol 177: 2990–2997PubMedGoogle Scholar
  64. Ranson-Olson B, Jones D, Donohue T and Zeilstra-Ryalls J (2006) In vitro and in vivo analysis of the role of PrrA in Rhodobacter sphaeroides 2.4.1 hemA gene expression. J Bacteriol 188: 3208–3218PubMedCrossRefGoogle Scholar
  65. Roh J, Smith W and Kaplan S (2004) Effects of oxygen and light intensity on transcriptome expression in Rhodobacter sphaeroides 2.4.1. J Biol Chem 279: 9146–9155PubMedCrossRefGoogle Scholar
  66. Scheer H (ed) (1991) Chlorophylls. CRC Press, Inc., Boca RatonGoogle Scholar
  67. Schell M (1993) Molecular biology of the LysR family of transcriptional regulators. Ann Rev Microbiol 47: 597–626CrossRefGoogle Scholar
  68. Schilke BA and Donohue TJ (1992) δ-aminolevulinate couples cycA transcription to changes in heme availability in Rhodobacter sphaeroides. J Mol Biol 226: 101–115PubMedCrossRefGoogle Scholar
  69. Smart J and Bauer C (2006) Tetrapyrrole biosynthesis in Rhodobacter capsulatus is transcriptionally regulated by the heme-binding regulatory protein, HbrL. J Bacteriol 188: 1567–1576PubMedCrossRefGoogle Scholar
  70. Smart J, Willett J and Bauer C (2004) Regulation of hem gene expression in Rhodobacter capsulatus by redox and photosystem regulators RegA, CrtJ, FnrL, and AerR. J Mol Biol 342: 1171–1186PubMedCrossRefGoogle Scholar
  71. Sofia H, Chen G, Hetzler B, Reyes-Spindola J and Miller N (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29: 1097–1106PubMedCrossRefGoogle Scholar
  72. Toledo-Cuevas M, Barquera B, Gennis R, Wikstrom M and Garcia-Horsman J (1998)The cbb 3-type cytochrome c oxidase from Rhodobacter sphaeroides, aproton-pumping heme-copper oxidase. Biochim Biophys Acta 1365: 421–434PubMedCrossRefGoogle Scholar
  73. Willows R, Lake V, Roberts T and Beale S (2003) Inactivation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus. J Bacteriol 185: 3249–3258PubMedCrossRefGoogle Scholar
  74. Wright M, Cardin R and Biel A (1987) Isolation and characterization of an aminolevulinate-requiring Rhodobacter capsulatus mutant. J Bacteriol 169: 961–966PubMedGoogle Scholar
  75. Wright M, Eckert J, Biel S and Biel A (1991) Use of a lacZ fusion to study transcriptional regulation of the Rhodobacter capsulatus hemA gene. FEMS Microbiol Lett 78: 339–342CrossRefGoogle Scholar
  76. Zeilstra-Ryalls JH and Kaplan S (1995a) Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: The role of the fnrL gene. J Bacteriol 177: 6422–6431PubMedGoogle Scholar
  77. Zeilstra-Ryalls JH and Kaplan S (1995b) Regulation of 5-aminolevulinic acid synthesis in Rhodobacter sphaeroides 2.4.1: The genetic basis of mutant H-5 auxotrophy. J Bacteriol 177: 2760–2768PubMedGoogle Scholar
  78. Zeilstra-Ryalls JH and Kaplan S (1996) Control of hemA expression in Rhodobacter sphaeroides 2.4.1: Regulation through alterations in cellular redox state. J Bacteriol 178: 985–993PubMedGoogle Scholar
  79. Zeilstra-Ryalls JH and Kaplan S (1998) Role of the fnrL gene in photosystem gene expression and photosynthetic growth of Rhodobacter sphaeroides 2.4.1. J Bacteriol 180: 1496–1503PubMedGoogle Scholar
  80. Zeilstra-Ryalls J and Kaplan S (2004) Oxygen intervention in the regulation of gene expression: The photosynthetic bacterial paradigm. Cell Molec Life Sci 61: 417–436PubMedCrossRefGoogle Scholar
  81. Zeilstra-Ryalls J and Schornberg K (2006) Analysis of hemF gene function and expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 188: 801–804PubMedCrossRefGoogle Scholar
  82. Zeilstra-Ryalls JH, Gabbert K, Mouncey NJ, Kranz RG and Kaplan S (1997) Analysis of the fnrL gene and its function in Rhodobacter capsulatus. J Bacteriol 179: 7264–7273PubMedGoogle Scholar
  83. Zeller T, Moskvin O, Li K, Klug G and Gomelsky M (2005) Transcriptome and physiological responses to hydrogen peroxide of the facultatively phototrophic bacterium Rhodobacter sphaeroides. J Bacteriol 187: 7232–7242PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Department of Biological SciencesBowling Green State UniversityBowling GreenUSA

Personalised recommendations