Skip to main content

Regulation of Genes by Light

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

Our current understanding of light-dependent regulation of gene expression in purple bacteria is summarized. Most of the regulatory systems utilize photoreceptor proteins that transmit a light-dependent signal to different downstream components to control a wide variety of physiological responses. The photoreceptors identified so far are (bacterio)phytochrome, sensory rhodopsin, phototropin-related proteins, BLUF domain proteins, cryptochrome, and photoactive yellow protein. They use different chromophores such as bilin, retinal, flavin or p-coumaric acid that absorb different wavelengths of light. Based on structural and spectroscopic studies, photochemical reaction mechanisms are beginning to be revealed, which show how the photoreceptors translate a light signal into protein structural changes. On the other hand, downstream factors as well as their signaling pathways are still largely unknown. Purple bacteria also respond to the light environment independently of the photoreceptors. Recent biochemical and genetic data have established that the responses involve photosynthetic and respiratory electron transport chains as well as reactive oxygen species such as singlet oxygen. Regulatory mechanisms of the photoreceptor-independent light responses are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BLUF:

sensors of Blue Light Using FAD

BV:

biliverdin IXα

E. :

Euglena

FMN:

flavin mononucleotide

FTIR:

Fourier transform infrared

GAF:

cyclic GMP, adenylyl cyclase, FhlA

LOV:

light oxygen voltage

NMR:

nuclear magnetic resonance

PAS:

Per Arnt Sim

PYP:

Photoactive Yellow Protein

Rba. :

Rhodobacter

Rcs. :

Rhodocista

Rps. :

Rhodopseudomonas

Rsp. :

Rhodospirillum

Rvi. :

Rubrivivax

SRII:

sensory rhodopsin II

Tch. :

Thermochromatium

References

  • Anderson S, Dragnea V, Masuda S, Ybe J, Moffat K and Bauer C (2005) Structure of a novel photoreceptor, the BLUF domain of AppA from Rhodobacter sphaeroides. Biochemistry 44: 7998–8005

    PubMed  CAS  Google Scholar 

  • Anthony JR, Newman JD and Donohue TJ (2004) Interactions between the Rhodobacter sphaeroides ECF sigma factor, σE, and its anti-sigma factor, ChrR. J Mol Biol 341: 345–360

    PubMed  CAS  Google Scholar 

  • Anthony JR, Warczak KL and Donohue TJ (2005) A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis. Proc Natl Acad Sci USA 102: 6502–6507

    PubMed  CAS  Google Scholar 

  • Armitage JP and Hellingwerf KJ (2003) Light-induced behavioural responses (Phototaxis) in prokaryotes. Photosynth Res 76: 145–155

    PubMed  CAS  Google Scholar 

  • Armitage JP, Ingham C and Evans MC (1985) Role of proton motive force in phototactic and aerotactic responses of Rhodopseudomonas sphaeroides. J Bacteriol 161: 967–972

    PubMed  CAS  Google Scholar 

  • Ávila-Pérez M, Hellingwerf KJ and Kort R (2006) Blue light activates the sigma-E dependent stress response of Bacillus subtilis via YtvA. J Bacteriol 188: 6411–6414

    PubMed  Google Scholar 

  • Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN and DeLong EF (2000) Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science 289: 1902–1906

    PubMed  Google Scholar 

  • Bhoo S, Davis SJ, Walker J, Karniol B and Vierstra RD (2001) Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414: 776–779

    PubMed  CAS  Google Scholar 

  • Braatsch S and Klug G (2004a) Blue light perception in bacteria. Photosynth Res 79: 45–57

    PubMed  CAS  Google Scholar 

  • Braatsch S and Klug G (2004b) ORF90, a gene required for photoreactivation in Rhodobacter capsulatus SB 1003 encodes a cyclobutane pyrimidine dimer photolyase. Photosynth Res 79: 167–177

    PubMed  CAS  Google Scholar 

  • Braatsch S, Gomelsky M, Kuphal S and Klug G (2002) A single flavoprotein, AppA, can integrate both redox and light signals in Rhodobacter sphaeroides. Mol Microbiol 45: 827–836

    PubMed  CAS  Google Scholar 

  • Braatsch S, Moskvin O, Klug G and Gomelsky M (2004) Responses of the Rhodobacter sphaeroides transcriptome to blue light under semiaerobic conditions. J Bacteriol 186: 7726–7735

    PubMed  CAS  Google Scholar 

  • Braatsch S, Johnson JA, Noll K and Beatty JT (2007) The O2-responsive repressor PpsR2 but not PpsR1 transduces a light signal sensedby the BphPl phytochrome in Rhodopseudomonas palustris CGA009. FEMS Microbiol Lett 272: 60–64

    PubMed  CAS  Google Scholar 

  • Briggs WR, Christie JM and Samomon M (2001) Phototropins: A new family of flavin-binding blue light receptors in plants. Antioxid Redox Signal 3: 775–788

    PubMed  CAS  Google Scholar 

  • Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho KI, Ishiura M, Kanehisa M, Roberts VA, Todo T, Tainer JA and Getzoff ED (2003) Identification of a new cryptochrome class: Structure, function, and evolution. Mol Cell 11: 59–67

    PubMed  CAS  Google Scholar 

  • Buggy JJ, Sganga MW and Bauer CE (1994) Characterization of a light-responding trans-activator responsible for differentially controlling reaction center and light-harvesting-I gene expression in Rhodobacter capsulatus. J Bacteriol 176: 6936–6943

    PubMed  CAS  Google Scholar 

  • Catlett NL, Yoder OC and Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukayotic Cell 2: 1151–1161

    CAS  Google Scholar 

  • Chen M, Chory J and Frankhauser C (2004) Light signal transduction in higher plants. Ann Rev Genet 38: 87–117

    PubMed  CAS  Google Scholar 

  • Cho SH, Youn SH, Lee SR, Yim HS and Kang SO (2004) Redox property and regulation of PpsR, a transcriptional repressor of photosystem gene expression in Rhodobacter sphaeroides. Microbiology 150: 697–706

    PubMed  CAS  Google Scholar 

  • Chung Y-H, Masuda S and Bauer CE (2007) Purification and reconstitution of PYP-phytochrome (Ppr) with biliverdin and 4-hydroxycinnamic acid. Methods Enzymol 422: 184–189

    PubMed  CAS  Google Scholar 

  • Clayton RK (1963) An automatic energy switch in photosynthesis. J Theor Biol 5: 497–499

    PubMed  CAS  Google Scholar 

  • Crosson S and Moffat K (2001) Structure of a flavin-binding plant photoreceptor domain: Insight into light-mediated signal transduction. Proc Natl Acad Sci USA 98: 2995–3000

    PubMed  CAS  Google Scholar 

  • Crosson S and Moffat K (2002) Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14: 1067–1075

    PubMed  CAS  Google Scholar 

  • Crosson S, Rajagopal S and Moffat K (2003) The LOV domain family: Photoresponsive signaling modules coupled to diverse output domains. Biochemistry 42: 2–10

    PubMed  CAS  Google Scholar 

  • Davis SJ, Vener AV and Vierstra RD (1999) Bacteriophytochromes: Phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Nature 286: 2517–2520

    CAS  Google Scholar 

  • Dorman CJ and Deighan P (2003) Regulation of gene expression by histone-like proteins in bacteria. Curr Opin Gen Dev 13: 179–184

    CAS  Google Scholar 

  • Dragnea V, Waegele M, Balascuta S, Bauer C and Dragnea B (2005) Time-resolved spectroscopic studies of the AppA bluelight receptor BLUF domain from Rhodobacter sphaeroides. Biochemistry. 44: 15978–85

    PubMed  CAS  Google Scholar 

  • Du S, Kouadio JLK and Bauer CE (1999) Regulated expression of a highly conserved regulatory gene cluster is necessary for controlling photosynthesis gene expression in response to anaerobiosis in Rhodobacter capsulatus. J Bacteriol 181: 4334–4341

    PubMed  CAS  Google Scholar 

  • Elsen S, Swem LR, Swem DL and Bauer CE (2004) RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 68: 263–279

    PubMed  CAS  Google Scholar 

  • Elsen S, Jaubert M, Pignol D and Giraud E (2005) PpsR: A multifaceted regulator of photosynthesis gene expression in purple bacteria. Mol Microbiol 57: 17–26

    PubMed  CAS  Google Scholar 

  • Elvin M, Loros JJ, Dunlap JC and Heintzen C (2005) The PAS/LOV protein VIVID supports arapidly dampened daytime oscillator that facilitates entrainment of the Neurospora circadian clock. Genes Dev 19: 2593–2605

    PubMed  CAS  Google Scholar 

  • Evans K, Fordham-Skelton AP, Mistry H, Reynolds CD, Lawless AM and Papiz MZ (2005) A bacteriophytochrome regulates the synthesis of LH4 complexes in Rhodopseudomonas palustris. Photosynth Res 85: 169–180

    PubMed  CAS  Google Scholar 

  • Fukushima Y, Okajima K, Shibata Y, Ikeuchi M and Itoh S (2005) Primary intermediate in the photocycle of a blue-light sensory BLUF FAD-protein, Tll0078, of Thermosynechococcus elongatus BP-1. Biochemistry 44: 5149–5158

    PubMed  CAS  Google Scholar 

  • Gaidenko TA, Kim T-J, Weigel AL, Brody MS and Price CW (2006) The blue light receptor YtvA acts in the environmental stress signaling pathway of Bacillus subtilis. J Bacteriol. 188: 6387–6395

    PubMed  CAS  Google Scholar 

  • Gauden M, Yeremenko S, Laan W, van Stokkum IHM, Ihalainen JA, van Grondelle R, Hellingwerf KJ and Kennis JTM (2005) Photocycle of the flavin-binding photoreceptor AppA, a bacterial transcriptional antirepressor of photosynthesis genes. Biochemistry 44: 3653–3662

    PubMed  CAS  Google Scholar 

  • Gauden M, van Stokkum IHM, Key JM, Luhrs DC, van Grondelle R, Hegemann P and Kennis JTM (2006) Hydrogen bond switching via radical pair mechanism in a flavin-binding photoreceptor. Proc Natl Acad Sci 103: 10895–10900

    PubMed  CAS  Google Scholar 

  • Giovani B, Byrdin M, Ahmad M and Brettel K (2003) Lightinduced electron transfer in a cryptochrome blue-light photoreceptor. Nat Struct Biol 10: 489–490.

    PubMed  CAS  Google Scholar 

  • Giraud E, Fardoux J, Fourrier N, Hannibal L, Genty B, Bouyer P, Dreyfus B and Verméglio A (2002) Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature 417: 202–205

    PubMed  CAS  Google Scholar 

  • Giraud E, Zappa S, Vuillet L, Adriano JM, Hannibal L, Fardoux J, Berthomieu C, Bouyer P, Pignol D and Verméglio A (2005) A new type of bacteriophytochrome acts in tandem with a classical bacteriophytochrome to control the antennae synthesis in Rhodopseudomonas palustris. J Biol Chem 280: 32389–32397

    PubMed  CAS  Google Scholar 

  • Glaeser J and Klug G (2005) Photo-oxidative stress in Rhodobacter sphaeroides: Protective role of carotenoids and expression of selected genes. Microbiology 151: 1927–1938

    PubMed  CAS  Google Scholar 

  • Gomelsky M and Kaplan S (1998) AppA, a redox regulator of photosystem formation in Rhodobacter sphaeroides 2.4.1, is a flavoprotein. Identification of a novel FAD binding domain. J. Biol. Chem. 273: 35319–35325

    PubMed  CAS  Google Scholar 

  • Gomelsky M and Kaplan S (1995a) AppA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 177: 4609–4618

    PubMed  CAS  Google Scholar 

  • Gomelsky M and Kaplan S (1995b) Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression. J Bacteriol 177: 1634–1637

    PubMed  CAS  Google Scholar 

  • Gomelsky M and Kaplan S (1997) Molecular genetic analysis suggesting interaction between AppA and PpsR in regulation of photo synthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 179: 128–134

    PubMed  CAS  Google Scholar 

  • Gomelsky M and Klug G (2002) BLUF: A novel FAD-binding domain involved in sensory transduction in bacteria. Trends Biochem Sci 27: 497–500

    PubMed  CAS  Google Scholar 

  • Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Buldt G, Savopol T, Scheidig AJ, Klare JP and Engelhard M (2002) Molecular basis of transmembrane signaling by sensory rhodopsis II-transducer complex. Nature 419: 484–487

    PubMed  CAS  Google Scholar 

  • Grinstead JS, Hsu SD, Laan W, Bonvin AMJJ, Hellingwerf KJ, Boelens R and Kaptein R (2006) The solution structure of the AppA BLUF domain: Insight into the Mechanism of lightinduced signaling. Chem Bio Chem 7: 187–193

    PubMed  CAS  Google Scholar 

  • Grishanin RN, Gauden DE and Armitage JP (1997) Photoresponses in Rhodobacter sphaeroides: Role of photosynthetic electron transport. J. Bacteriol. 179: 24–30

    PubMed  CAS  Google Scholar 

  • Han Y, Braatsch S, Osterloh L and Klug G (2004) A eukaryotic BLUF domain mediates light-dependent gene expression in the purple bacterium Rhodobacter sphaeroides 2.4.1. Proc Natl Acad Sci USA 101: 12306–12311

    PubMed  CAS  Google Scholar 

  • Happ H, Braatsch S, Broschek V, Osterloh V and Klug G (2005) A blue light dependent expression of photosynthesis genes under anaerobic conditions in Rhodobacter capsulatus and Rhodobacter sphaeroides is mediated by photosynthetic electron transport. Mol Microbiol 58: 903–914

    PubMed  CAS  Google Scholar 

  • Harper SM, Neil LC and Gardner KH (2003) Structural basis of a phototropin light switch. Science 301: 1541–1544

    PubMed  CAS  Google Scholar 

  • Harper SM, Christie JM and Gardner KH (2004) Disruption of the LOV-Ja Helix interaction activates phototropin kinase activity. Biochemistry 43: 16184–16192

    PubMed  CAS  Google Scholar 

  • Hasegawa K, Masuda S and Ono T-A (2005) Spectroscopic analysis of the dark relaxation process of a photocycle in a sensor of blue light using FAD (BLUF) protein Slr 1694 of the cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 46: 136–146

    PubMed  CAS  Google Scholar 

  • Hitomi K, Okamoto K, Daiyasu H, Miyashita H, Iwai S, Toh H, Ishiura M and Todo T (2000) Bacterial cryptochrome and photolyase: Characterization of two photolyase-like genes of Synechocystis sp. PCC6803. Nucleic Acids Res. 28: 2353–2362

    PubMed  CAS  Google Scholar 

  • Hughes J, Lamparter T, Mittmann F, Hartmann E, Gärtner W, Wilde A and Börner T (1997) A prokaryotic phytochrome. Nature 386: 663

    PubMed  CAS  Google Scholar 

  • Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T and Watanabe M (2002) A blue-light-activated adenylyl cyclase mediatedphotoavoidance in Euglena gracilis. Nature 415: 1047–1051

    PubMed  CAS  Google Scholar 

  • Ito S, Murakami A, Sato K, Nishina Y, Shiga K, Takahashi T, Higuchi S, Iseki M and Watanabe M (2005) Photocycle features of heterologously expressed and assembled eukaryotic flavinbinding BLUF domains of photoactivated adenylyl cyclase (PAC), a blue-light receptor in Euglena gradlis. Photochem Photobiol Sci 4: 762–769

    PubMed  CAS  Google Scholar 

  • Iwata T, Nozaki D, Tokutomi S, Kagawa T, Wada M and Kandori H (2003) Light-induced structural changes in the LOV2 domain of Adianturn phytochrome 3 studied by low-temperature FTIR and UV-visible spectroscopy. Biochemistry 42: 8183–8191

    PubMed  CAS  Google Scholar 

  • Jiang ZY, Rushing BG, Bai Y, Gest H and Bauer CE (1998) Isolation of Rhodospirillum centeneum mutants defective in phototactic colony motility by transposon mutagenesis. J Bacteriol 180: 1248–1255

    PubMed  CAS  Google Scholar 

  • Jiang ZY, Swem LR, Rushing BG, Devanathan S, Tollin G and Bauer CE (1999) Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochrome. Science 285: 406–409

    PubMed  CAS  Google Scholar 

  • Jung KH, Trivedi VD and Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol. Microbiol. 47: 1513–1522

    PubMed  CAS  Google Scholar 

  • Jung A, Domratcheva T, Tarutina M, Wu Q, Ko WH, Shoeman RL, Gomelsky M, Gardner KH and Schlichting I (2005) Abstract structure of a bacterial BLUF photoreceptor: Insights into blue light-mediated signal transduction. Proc Natl Acad Sci USA 102: 12350–12355

    PubMed  CAS  Google Scholar 

  • Kaplan S, Eraso J and Roh JH (2005) Interacting regulatory networks in the facultative photosynthetic bacterium, Rhodobacter sphaeroides 2.4.1. Biochem Soc Trans 33: 51–55

    PubMed  CAS  Google Scholar 

  • Kehoe DM and Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273: 1409–1412

    PubMed  CAS  Google Scholar 

  • Kennis JTM, Crosson S, Gauden M, Stokkum IHM, Moffat K and van Grondelle R (2003) Primary reactions of the LOV2 domain of phototropin, a plant blue-light photoreceptor. Biochemistry 42: 3385–3392

    PubMed  CAS  Google Scholar 

  • Kita A, Okajima K, Morimoto Y, Ikeuchi M and Miki K (2005) Structural of a cyanobacterial BLUF protein, Tll0078, containing a novel FAD-binding blue-light sensor domain. J Mol. Biol. 349: 1–9

    PubMed  CAS  Google Scholar 

  • Kort R, Hoff WD, van West M, Kroon AR, Hoffer SM, Vlieg KH, Crielaard W, van Beeumen JJ and Hellingwerf KJ (1996) The xanthopsins: A new family of eubacterial blue-light photoreceptors. EMBO J 15: 3209–3218

    PubMed  CAS  Google Scholar 

  • Kottke T, Heberle J, Hehn D, Dick B and Hegemann P (2003) Phot-LOV1: Photocycle of a blue-light receptor domain from the green Alga Chlamydomonas reinhardtii. Biophys J 84: 1192–1201

    PubMed  CAS  Google Scholar 

  • Krauss U, Losi A, Gärtner W, Jaeger KF and Eggert T (2005) Initial characterization of a blue-light sensing, phototropin-related protein from Pseudomonas putida: A paradigm for an extended LOC construct. Phys Chem Chem Phys 7: 2804–2811

    PubMed  CAS  Google Scholar 

  • Kraft BJ, Masuda S, Kikuchi J, Dragnea V, Tollin G, Zaleski JM and Bauer CE (2003) Spectroscopic and mutational analysis of the blue-light photoreceptor App A: A novel photocycle involving flavin stacking with an aromatic amino acid. Biochemistry 42: 6726–6734

    PubMed  CAS  Google Scholar 

  • Kyndt JA, Meyer TE and Cusanovich MA (2004) Photoactive yellow protein, bacteriophytochrome, and sensory rhodopsin in purple phototrophic bacteria. Photochem Photobiol Sci 3: 519–530

    PubMed  CAS  Google Scholar 

  • Laan W, van der Horst MA, van Stokkum IH and Hellingwerf KJ (2003) Initial characterization of the primary photochemistry of AppA, a blue-light-using flavin adenine dinucleotide-domain containing transcriptional antirepressor protein from Rhodobacter sphaeroides: A key role for reversible intramolecular proton transfer from the flavin adenine dinucleotide chromophore to a conserved tyrosine? Photochem Photobiol. 78: 290–297

    PubMed  CAS  Google Scholar 

  • Lagarias JC and Rapoport H (1980) Chromopeptides from phytochrome. The structure and linkage of the Pr form of the phytochrome chromophore. J Am Chem Soc 102: 4821–1828

    CAS  Google Scholar 

  • Lamparter T, Esteban B and Hughes J (2001) Phytochrome Cphl from the cyanobacterium Synechocystis PCC6803-Purification, assembly, and quaternary structure. Eur J Biochem 268: 4720–4730

    PubMed  CAS  Google Scholar 

  • Lamparter T, Carrascal M, Michel N, Martinez E, Rottwinkel G and Abian J (2004) The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1. Biochemistry 43: 3659–3669

    PubMed  CAS  Google Scholar 

  • Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres JL, Peres C, Harrison FH, Gibson J and Harwood CS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22: 55–61

    PubMed  CAS  Google Scholar 

  • Lin C (2002) Blue light receptors and signal transduction. Plant Cell 14: 207–225

    Google Scholar 

  • Losi A (2004) The bacterial counterparts of plant phototropins. Photochem Photobiol Sci 3: 566–574

    PubMed  CAS  Google Scholar 

  • Losi A, Polverini E, Quest B and Gärtner W (2002) First evidence for phototropin-related blue-light receptors in prokaryotes. Biophys J 82: 2627–2634

    Article  PubMed  CAS  Google Scholar 

  • Macnab R and Koshland Jr DE (1974) Bacterial motility and chemotaxis: Light-induced tumbling response and visualization of individual flagella. J Mol Biol 84: 399–406

    PubMed  CAS  Google Scholar 

  • Masuda S and Bauer CE (2002) AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110: 613–623

    PubMed  CAS  Google Scholar 

  • Masuda S and Bauer CE (2004) Null mutation of HvrA compensates for loss of an essential relA/spoT-like gene in Rhodobacter capsulatus. J Bacteriol 186: 235–239

    PubMed  CAS  Google Scholar 

  • Masuda S and Ono T-A (2004) Biochemical characterization of the major adenylyl cyclase, Cyal, in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 577: 255–258

    PubMed  CAS  Google Scholar 

  • Masuda S, Dong C, Swem DL, Setterdahl AT, Knaff DB and Bauer CE (2002) Repression of photosynthesis gene expression by formation of a disulfide bond in CrtJ. Proc Natl Acad Sci USA 99: 7078–7083

    PubMed  CAS  Google Scholar 

  • Masuda S, Hasegawa K, Ishii A and Ono T-A (2004) Lightinduced structural changes in a putative blue-light receptor with a novel FAD binding fold sensor of blue-light using FAD (BLUF); Slr1694 of Synechocystis sp. PCC6803. Biochemistry 43: 5304–5313

    PubMed  CAS  Google Scholar 

  • Masuda S, Hasegawa K and Ono T-A (2005a) Light-induced structural changes of apoprotein and chromophore in the sensor of blue light using FAD (BLUF) domain of AppA for a signaling state. Biochemistry 44: 1215–1224

    PubMed  CAS  Google Scholar 

  • Masuda S, Hasegawa K and Ono T-A (2005b) Tryptophan at position 104 is involved in transforming light signal into changes of β-sheet structure for the signaling state in the BLUF domain of AppA. Plant Cell Physiol. 46: 1894–1901

    PubMed  CAS  Google Scholar 

  • Meyer TE (1985) Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila. Biochim Biophys Acta 806: 175–183

    PubMed  CAS  Google Scholar 

  • Moskvin OV, Gomelsky L and Gomelsky M (2005) Transcriptome analysis of the Rhodobacter sphaeroides PpsR regulon: PpsR as a master regulator of photosystem development. J Bacteriol 187: 2148–2156

    PubMed  CAS  Google Scholar 

  • Newman JD, Anthony JR and Donohue TJ (2001) The importance of zinc-binding to the function of Rhodobacter sphaeroides ChrR as an anti-sigma factor. J Mol Biol 313: 485–499

    PubMed  CAS  Google Scholar 

  • Nishimura K, Shimada H, Hatanaka S, Mizoguchi H, Ohta H, Masuda T and Takamiya K (1998) Growth, pigmentation, and expression of the puf and puc operons in a light-respondingrespressor (SPB)-disrupted Rhodobacter sphaeroides. Plant Cell Physiol 39: 411–417

    PubMed  CAS  Google Scholar 

  • Nozaki D, Iwata T, Ishikawa T, Todo T, Tokutomi S and Kandori H (2004) Role of Gln1029 in the photoactivation processes of the LOV2 domain in Adiantum phytochrome3. Biochemistry 43: 8373–8379

    PubMed  CAS  Google Scholar 

  • Oh JI and Kaplan S (2000) Redox signaling: Globalization of gene expression. EMBO J 19: 4237–4247

    PubMed  CAS  Google Scholar 

  • Oh JI and Kaplan S (2002) Oxygen adaptation. The role of the CcoQ subunit of the cbb3 cytochrome c oxidase of Rhodobacter sphaeroides 2.4.1. J Biol Chem 277: 16220–16228

    PubMed  CAS  Google Scholar 

  • Oh JI, Ko I-J and Kaplan S (2004) Reconstitution of the Rhodobacter sphaeroides cbb3-PrrBA signal transduction pathway in vitro. Biochemistry 43: 7915–7923

    PubMed  CAS  Google Scholar 

  • Okajima K, Yoshihara S, Fukushima Y, Geng X, Katayama M, Higashi S, Watanabe M, Sato S, Tabata S, Shibata Y, Itoh S and Ikeuchi M (2005) Biochemical and functional characterization of BLUF-type flavin-binding proteins of two species of cyanobacteria. J Biochem (Tokyo) 137: 741–750

    CAS  Google Scholar 

  • Ouchane S, Picaud M, Vernotte C and Astier C (1997) Photooxidative stress stimulates illegitimate recombination and mutability in carotenoid-less mutants of Rubrivivax gelatinosus. EMBO J 16: 4777–4787

    PubMed  CAS  Google Scholar 

  • Panda S, Hogenesch JB and Kay SA (2002) Circadian rhythms from flies to humans. Nature 417: 329–335

    PubMed  CAS  Google Scholar 

  • Park CM, Kim JI, Yang SS, Kang JG, Kang JH, Shim JY, Chung YH, Park YM and Song PS (2000) A second photochromic bacteriophytochrome from Synechocystis sp PCC6803: special analysis and down-regulation by light. Biochemistry 39: 10840–10847

    PubMed  CAS  Google Scholar 

  • Penfold RJ and Pemberton JM (1994) Sequencing, chromosomal inactivation, and functional expression in E. coli of ppsR, a gene which represses carotenoid and bacteriochlorophyll synthesis in Rhodobacter sphaeroides. J Bacteriol 176: 2869–2876

    PubMed  CAS  Google Scholar 

  • Ponnampalam SN and Bauer CE (1997) DNA binding characteristics of CrtJ. J Biol Chem 272: 18391–18396

    PubMed  CAS  Google Scholar 

  • Ponnampalam SN, Buggy JJ and Bauer CE (1995) Characterization of an aerobic repressor that coordinately regulates bacteriochlorophyll, carotenoid, and light harvesting-II expression in Rhodobacter capsulatus. J Bacteriol 177: 2990–2997

    PubMed  CAS  Google Scholar 

  • Porter SL, Warren AV, Martin AC and Armitage JP (2002) The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis. Mol Microbiol 46: 1081–1094

    PubMed  CAS  Google Scholar 

  • Ragatz L, Jiang Z-Y, Bauer CE and Gest H. (1994) Phototactic purple bacteria. Nature 370, 104

    Google Scholar 

  • Ragatz L, Jiang ZY, Bauer CE and Gest H (1995) Macroscopic phototactic behaviour of the purple photosynthetic bacterium Rhodospirillum centeneum. Arch Microbiol 163: 1–6

    PubMed  CAS  Google Scholar 

  • Rajagopal S, Key JM, Purcell EB, Boerema DJ and Moffat K (2004) Purification and initial characterization of a putative blue light-regulated phosphodiesterase from Escherichia coli. Photochem Photobiol 80: 542–547

    PubMed  CAS  Google Scholar 

  • Rockwell NC, Su Y-S and Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57: 837–858

    PubMed  CAS  Google Scholar 

  • Romagnoli S and Armitage JP (1999) Roles of chemosensory pathways in transient changes in swimming speed of Rhodobacter sphaeroides induced by changes in photosynthetic electron transport. J Bacteriol 181: 34–39

    PubMed  CAS  Google Scholar 

  • Salomon M, Christie JM, Knieb E, Lempert U and Briggs WR (2000) Photochemical and mutational analysis of the FMN binding domains of the plant blue light receptor phototropin. Biochemistry 39: 9401–9410

    PubMed  CAS  Google Scholar 

  • Sancar A. (2004) Photolyase and cryptochrome blue-light photoreceptors. Adv Protein Chem 69: 73–100

    PubMed  CAS  Google Scholar 

  • Sato Y, Iwata T, Tokutomi S and Kandori H (2005) Reactive cystein is protonated in the triplet excited state of the LOV2 domain in Adiantum phytochrome3. J Am Chem Soc 127: 1088–1089

    PubMed  CAS  Google Scholar 

  • Schleicher E, Kowalczyk RM, Kay CWM, Hegemann P, Bacher A, Fischer M, Bittl R, Richter G and Weber S (2004) On the reaction mechanism of adduct formation in LOV domains of the plant blue-light receptor phototropin. J Am Chem Soc 126: 11067–11076

    PubMed  CAS  Google Scholar 

  • Schwerdtfeger C and Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22: 4846–4855

    PubMed  CAS  Google Scholar 

  • Shimada H, Iba K and Takamiya K (1992) Blue-light irradiation reduces the expression of puf and puc operons of Rhodobacter sphaeroides under semi-aerobic conditions. Plant Cell Physiol 33: 471–475

    CAS  Google Scholar 

  • Shimada H, Wada T, Handa H, Ohta H, Mizoguchi H, Nishimura K, Masuda T, Shioi Y and Takamiya K (1996) A transcription factor with a leucine-zipper motif involved in light-dependent inhibition of expression of the puf operon in the photosynthetic bacterium Rhodobacter sphaeroides. Plant Cell Physiol 37: 515–522

    PubMed  CAS  Google Scholar 

  • Sprenger WW, Hoff WD, Armitage JP and Hellingwerf KJ (1993) The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein. J Bacteriol 175: 3096–3104

    PubMed  CAS  Google Scholar 

  • Spudich JL, Yang CS, Jung KH and Spudich EN (2000) Retinylidene proteins: Structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16: 365–392

    PubMed  CAS  Google Scholar 

  • Swartz TE, Corchnoy SB, Christie JM, Lewis JW, Szundi I, Briggs WR and Bogomolni RA (2001) The photocycle of a flavinbinding domain of the blue light photoreceptor phototropin. J. Biol. Chem. 276: 36493–36500.

    PubMed  CAS  Google Scholar 

  • Swartz TE, Wenzel PJ, Corchnoy SB, Briggs WR and Bogomolni RA (2002) Vibration spectroscopy reveals light-induced chromophore and protein structural changes in the LOV2 domain of the plant blue-light receptor phototropin 1. Biochemistry 41: 7183–7189

    PubMed  CAS  Google Scholar 

  • Swem LR, Gong X, Yu CA and Bauer CE (2006) Identification of a ubiquinone-binding site that affects autophosphorylation of the sensor kinase RegB. J. Biol. Chem. 281: 6768–6775

    PubMed  CAS  Google Scholar 

  • Takamiya K and Takamiya A (1969) Light-induced reactions of ubiquinone in photosynthetic bacterium, Chromatium D. III. Oxidation-reduction state of ubiquinone in intact cells of Chromatium D. Plant Cell Physiol. 10: 363–368

    CAS  Google Scholar 

  • Tarutina M, Ryjenkov DA and Gomelsky M. (2006) An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP. J Biol Chem 281: 34751–34758

    PubMed  CAS  Google Scholar 

  • Unno M, Sano R, Masuda S, Ono T-A and Yamauchi S (2005) Light-induced structural changes in the active site of the BLUF domain in AppA by Raman spectroscopy. J Phys Chem B 109: 12620–12626

    PubMed  CAS  Google Scholar 

  • Unno M, Masuda S, Ono T-A and Yamauchi S (2006) Orientation of a key glutamine residue in the BLUF domain from AppA revealed by mutagenesis, spectroscopy, and quantum chemical calculations. J Am Chem Soc 128: 5638–5639

    PubMed  CAS  Google Scholar 

  • Wagner JR, Brunzelle JS, Forest KT and Vierstra RD (2005) A light-sensing knot revealed by the structure of the chromophore binding domain of phytochrome. Nature 438: 325–331

    PubMed  CAS  Google Scholar 

  • Weaver P (1971) Temperature-sensitive mutations of the photosynthetic apparatus of Rhodospirillum rubrum. Proc Natl Acad Sci USA 68: 136–138

    PubMed  CAS  Google Scholar 

  • Wu SH and Lagarias JC (2000) Defining the bilin lyase domain: Lessons from the extended phytochrome superfamily. Biochemistry 39: 13487–13495

    PubMed  CAS  Google Scholar 

  • Yeh K-C, Wu SH, Murphy JT and Lagarias JC (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277: 1505–1508

    PubMed  CAS  Google Scholar 

  • Zeugner A, Byrdin M, Bouly J, Bakrim N, Giovani B, Brettel K and Ahmad M (2005) Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function. J Biol Chem 280: 19437–19440

    PubMed  CAS  Google Scholar 

  • Zirak P, Penzkofer A, Schiereis T, Hegemann P, Jung A and Schlichting I (2005) Absorption and fluorescence spectroscopic characterization of BLUF domain of AppA from Rhodobacter sphaeroides. Chem Phys 315: 142–154

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriele Klug or Shinji Masuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Klug, G., Masuda, S. (2009). Regulation of Genes by Light. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_36

Download citation

Publish with us

Policies and ethics