Skip to main content

Degradation of Aromatic Compounds by Purple Nonsulfur Bacteria

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

Aromatic compounds are among the more difficult groups of naturally occurring organic compounds to degrade because of the high resonance stability of benzene rings. Some purple nonsulfur bacteria have a well-developed ability to degrade green plant-derived aromatic compounds including a variety of lignin monomers as well as some man-made compounds, including chlorobenzoates and toluene. Peripheral pathways modify these compounds to form a small number of common intermediates that enter pathways leading to ring cleavage. Depending on the compound and the species involved, degradation can occur aerobically under chemoheterotrophic conditions or anaerobically under photoheterotrophic conditions. Two different biochemical strategies, one involving oxygenases and the other involving aromatic ring reduction, take place depending on the availability of oxygen. The best-studied aromatic compound-degrading species, Rhodopseudomonas (Rps.) palustris, has served as a model organism to elucidate a central reductive pathway of benzoate degradation that is used to process most compounds anaerobically. The main features of this pathway appear to apply to other metabolic groups of bacteria that degrade aromatic compounds under anaerobic conditions. These include a novel enzyme, benzoyl-CoA reductase, that relieves the resonance stability of the aromatic ring, and a sequence of β-oxidation-like reactions leading to ring cleavage by a new type of ring cleavage enzyme. The genes for anaerobic benzoate and 4-hydroxybenzoate degradation have been located on the sequenced genome of Rps. palustris strain CGA009. A similar gene cluster is present in three other recently sequenced strains of Rhodopseudomonas. The genome sequence of one of the strains, BisB5, revealed that this strain can degrade an expanded set of aromatic compounds converging on and including phenylacetate under photoheterotrophic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

3-CBA:

3-Chlorobenzoate

4-HBA:

4-Hydroxybenzoate

Benzoyl-CoA:

Benzoyl-coenzyme A

CoA:

Coenzyme A

Rps. :

Rhodopseudomonas

Rsp. :

Rhodospirillum

Rvi. :

Rubrivivax

T. :

Thauera

References

  • Alekshun MN and Levy SB (1999) The mar regulon: Multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 7: 410–413

    PubMed  CAS  Google Scholar 

  • Alekshun MN, Levy SB, Mealy TR, Seaton BA and Head JF (2001) The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nat Struct Biol 8: 710–714

    PubMed  CAS  Google Scholar 

  • Anders H-J, Kaetzke A, Kämpfer P, Ludwig W and Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K172 and KB 740 and their description as new members of the genera Thaurea, as Thaurea aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45: 327–333

    PubMed  CAS  Google Scholar 

  • Arai H, Kodama T and Igarashi Y (1997) Cascade regulation of the two CRP/FNR related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa. Mol Microbiol 25: 1141–1148

    PubMed  CAS  Google Scholar 

  • Bell SG, Hoskins N, Xu F, Caprotti D, Rao Z and Wong LL (2006) Cytochrome P450 enzymes from the metabolically diverse bacterium Rhodopseudomonas palustris. Biochem Biophys Res Commun 342: 191–196

    PubMed  CAS  Google Scholar 

  • Birch AJ and Smith H (1958) Reduction by metal-amine solutions: Application in the synthesis and determination of structure. Q Rev Chem Soc Lond 12: 17–33

    CAS  Google Scholar 

  • Blankenship RE, Madigan MT and Bauer CE (1995) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Boll M (2005) Key enzymes in the anaerobic aromatic metabolism catalysing Birch-like reductions. Biochim Biophys Acta 1707: 34–50

    PubMed  CAS  Google Scholar 

  • Boll M and Fuchs G (1998) Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. Eur J Biochem 251: 946–954

    PubMed  CAS  Google Scholar 

  • Boll M and Fuchs G (1995) Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. Eur J Biochem 234: 921–933

    PubMed  CAS  Google Scholar 

  • Boll M, Fuchs G, Meier C, Trautwein A and Lowe DJ (2000a) EPR and Mossbauer studies of benzoyl-CoA reductase. J Biol Chem 275: 31857–31868

    PubMed  CAS  Google Scholar 

  • Boll M, Fuchs G, Tilley G, Armstrong FA and Lowe DJ (2000b) Unusual spectroscopic and electrochemical properties of the 2[4Fe–4S] ferredoxin of Thauera aromatica. Biochemistry 39: 4929–4938

    PubMed  CAS  Google Scholar 

  • Boll M, Laempe D, Eisenreich W, Bacher A, Mittelberger T, Heinze J and Fuchs G (2000c) Non-aromatic products from anoxic conversion of benzoyl-CoA with benzoyl-Co A reductase and cyclohexa-1, 5-diene-1-carbonyl-CoA hydratase. J Biol Chem 275: 21889–21895

    PubMed  CAS  Google Scholar 

  • Boll M, Fuchs G and Lowe DJ (2001) Single turnover EPR studies of benzoyl-CoA reductase. Biochemistry 40: 7612–7620

    PubMed  CAS  Google Scholar 

  • Brackmann R and Fuchs G (1993) Enzymes of anaerobic metabolism of phenolic compounds. 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from a denitrifying Pseudomonas species. Eur J Biochem 213: 563–571

    PubMed  CAS  Google Scholar 

  • Breese K and Fuchs G (1998) 4-Hydroxybenzoyl-Co A reductase (dehydroxylating) from the denitrifying bacterium Thauera aromatica — prosthetic groups, electron donor, and genes of a member of the molybdenum-flavin-iron-sulfur proteins. Eur J Biochem 251: 916–923

    PubMed  CAS  Google Scholar 

  • Breese K, Boll M, Alt-Morbe J, Schagger H and Fuchs G (1998) Genes coding for the benzoyl-CoA pathway of anaerobic aromatic metabolism in the bacterium Thauera aromatica. Eur J Biochem 256: 148–154

    PubMed  CAS  Google Scholar 

  • Buckel W and Keese R (1995) One electron redox reactions of CoASH esters in anaerobic bacteria — a mechanistic proposal. Angew Chem (Int. Ed.) 34: 1502–1506

    CAS  Google Scholar 

  • Clarke F M and Fina LR (1952) The anaerobic decomposition of benzoic acids during methane fermentation. Arch Biochem Biophys 36: 26–32

    Google Scholar 

  • Dagley S (1986) Biochemistry of aromatic hydrocarbon degradation in Pseudomonads. In: Sokatch JR and Ornston N (eds), The Bacteria (The Biology of Pseudomonas, Vol. 10),pp. 527–556. Academic Press, Orlando

    Google Scholar 

  • Dalrymple B.P. and Swadling Y. (1997) Expression of a Butyrivibrio fibrisolvens E14 gene (cinB) encoding an enzyme with cinnamoyl ester hydrolase activity is negatively regulated by the product of an adjacent gene (cinR). Microbiology 143: 1203–1210

    PubMed  CAS  Google Scholar 

  • Dispensa M, Thomas CT, Kim M-K, Perrotta JA, Gibson J and Harwood CS (1992) Anaerobic growth of Rhodopseudomonas palustris on 4-hydroxybenzoate is dependent on AadR, a member of the cyclic AMP receptor protein family of transcriptional regulators. J Bacteriol 174: 5803–5813

    PubMed  CAS  Google Scholar 

  • Dutton PL and Evans WC (1969) The metabolism of aromatic compounds by Rhodopseudomonas palustris. Biochem J 113: 525–536

    PubMed  CAS  Google Scholar 

  • Dutton PL and Evans WC (1978) The metabolism of aromatic compounds by the Rhodospirillaceae. In: Clayton RK and Sistrom WR (eds)The Photosynthetic Bacteria, pp. 719–726. Plenum, New York

    Google Scholar 

  • Dörner E and Boll M (2002) Properties of 2-oxoglutarate:ferredoxin oxidoreductase from Thauera aromatica and its role in enzymatic reduction of the aromatic ring. J Bacteriol 184: 3975–3983

    PubMed  Google Scholar 

  • Ebenau-Jehle C, Boll M and Fuchs G (2003) 2-Oxoglutarate: NADP oxidoreductase in Azoarcus evansii: Properties and function in electron transfer reactions in aromatic ring reduction. J Bacteriol 185: 6119–6129

    PubMed  CAS  Google Scholar 

  • Eberhard ED and Gerlt JA (2004) Evolution of function in the crotonase superfamily: The stereochemical course of the reaction catalyzed by 2-ketocyclohexanecarboxyl-CoA hydrolase. J Am Chem Soc 126: 7188–7189

    PubMed  CAS  Google Scholar 

  • Egland PG (1997) The molecular basis of anaerobic benzoate degradation. PhD Dissertation. University of Iowa, Iowa City

    Google Scholar 

  • Egland PG and Harwood CS (1999) BadR, a new MarR family member, regulates anaerobic benzoate degradation by Rhodopseudomonas palustris in concert with AadR, an Fnr family member. J Bacteriol 181: 2102–2109

    PubMed  CAS  Google Scholar 

  • Egland PG and Harwood CS (2000) HbaR, a 4-hydroxybenzoate sensor and FNR-CRP superfamily member, regulates anaerobic 4-hydroxybenzoate degradation by Rhodopseudomonas palustris. J Bacteriol 182: 100–106

    PubMed  CAS  Google Scholar 

  • Egland PG, Gibson J and Harwood CS (1995) Benzoate-coenzyme A ligase, encoded by bad A, is one of three ligases able to catalyze benzoyl-coenzyme A formation during anaerobic growth of Rhodopseudomonas palustris on benzoate. J Bacteriol 177: 6545–6551

    PubMed  CAS  Google Scholar 

  • Egland PG, Pelletier DA, Dispensa M, Gibson J and Harwood CS (1997) A cluster of bacterial genes for anaerobic benzene ring biodegradation. Proc Natl Acad Sci USA 94: 6484–6489

    PubMed  CAS  Google Scholar 

  • Egland PG, Gibson J and Harwood CS (2001) Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris. Appl Environ Microbiol 67: 1396–1399

    PubMed  CAS  Google Scholar 

  • Elder DJ, Morgan P and Kelly DJ (1992) Anaerobic degradation of trans-cinnamate and omega-phenylalkane carboxylic acids by the photosynthetic bacterim Rhodopseudomonas palustris: Evidence for a beta-oxidation mechanism. Arch Microbiol 157: 148–154

    PubMed  CAS  Google Scholar 

  • Elshahed MS and McInerney MJ (2001) Benzoate fermentation by the anaerobic bacterium Syntrophus aciditrophicus in the absence of hydrogen-using microorganisms. Appl Environ Microbiol 67: 5520–5525

    PubMed  CAS  Google Scholar 

  • Fina LR and Fiskin AM (1960) The anaerobic decomposition of benzoic acid during methane fermentation. II. Fate of carbon atoms one and seven. Arch Biochem Biophys 91: 163–165

    PubMed  CAS  Google Scholar 

  • Fisher K and Newton WE (2002) Nitrogen fixation—a general overview. In: Leigh GJ (ed) Nitrogen Fixation in the Millennium, pp 1–34, Elsevier, Amsterdam

    Google Scholar 

  • Fu Z, Wang M, Paschke R, Rao KS, Frerman FE and Kim J-J P (2004) Crystal structures of human glutaryl-CoA dehydrogenase with and without an alternate substrate: Structural bases of dehydrogenation and decarboxylation reactions. Biochemistry 43: 9674–9684

    PubMed  CAS  Google Scholar 

  • Gallus C and Schink B (1994) Anaerobic degradation of pimelate by newly isolated denitrifying bacteria. Microbiology 140: 409–416

    Article  PubMed  CAS  Google Scholar 

  • Geissler JF, Harwood CS and Gibson J (1988) Purification and properties of benzoate-coenzyme A ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. J Bacteriol 170: 1709–1714

    PubMed  CAS  Google Scholar 

  • Gibson J and Harwood CS (1995) Degradation of aromatic compounds by nonsulfur purple bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 991–1003. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gibson J and Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Ann Rev Microbiol 56: 345–369

    CAS  Google Scholar 

  • Gibson J, Dispensa M, Fogg GC, Evans DT and Harwood CS (1994) 4-Hydroxybenzoate-coenzyme A ligase from Rhodopseudomonas palustris: Purification, gene sequence, and role in anaerobic degradation. J Bacteriol 176: 634–641

    PubMed  CAS  Google Scholar 

  • Gibson J, Dispensa M and Harwood CS (1997) 4-Hydroxybenzoyl coenzyme A reductase (dehydroxylating) is required for anaerobic degradation of 4-hydroxybenzoate by Rhodopseudomonas palustris and shares features with molybdenum-containing hydroxylases. J Bacteriol 179: 634–642

    PubMed  CAS  Google Scholar 

  • Gibson KJ and Gibson J (1992) Potential early intermediates in anaerobic benzoate degradation by Rhodopseudomonas palustris. Appl Environ Microbiol 58: 696–698

    PubMed  CAS  Google Scholar 

  • Guyer M and Hegeman G (1969) Evidence for a reductive pathway for the anaerobic metabolism of benzoate. J Bacteriol 99: 906–907

    PubMed  CAS  Google Scholar 

  • Harrison FH and Harwood CS (2005) The pim FABCDE operon from Rhodopseudomonas palustris mediates dicarboxylic acid degradation andparticipates in anaerobic benzoate degradation. Microbiology 151: 727–736

    PubMed  CAS  Google Scholar 

  • Harwood CS and Gibson J (1988) Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. Appl and Environ Microbiol 54: 712–717

    CAS  Google Scholar 

  • Harwood CS, Burchhardt G, Herrmann H and Fuchs G (1999) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev 22: 439–458

    Google Scholar 

  • Hegeman GD (1967) The metabolism of p-hydroxybenzoate by Rhodopseudomonas palustris and its regulation. Arch Microbiol 59: 143–148

    CAS  Google Scholar 

  • Heider J and Fuchs G (1997a) Microbial anaerobic aromatic metabolism. Anaerobe 3: 1–22

    PubMed  CAS  Google Scholar 

  • Heider J and Fuchs G (1997b) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243: 577–596

    PubMed  CAS  Google Scholar 

  • Hirsch W, Schagger H and Fuchs G (1998) Phenylglyoxylate: NAD(+) oxidoreductase (CoA benzoylating), a new enzyme of anaerobic phenylalanine metabolism in the denitrifying bacterium Azoarcus evansii. Eur J Biochem 251: 907–915

    PubMed  CAS  Google Scholar 

  • Holden HM, Benning MM, Haller T and Gerlt JA (2001) The crotonase superfamily: Divergently related enzymes that catalyze different reactions involving acyl coenzyme A thioesters. Acc Chem Res 34: 145–157

    PubMed  CAS  Google Scholar 

  • Härtel U, Eckel E, Koch J, Fuchs G, Linder D and Buckel W (1993) Purification of glutaryl-CoA dehydrogenase from Pseudomonas sp., an enzyme involved in the anaerobic degradation of benzoate. Arch Microbiol 159: 712–717

    Google Scholar 

  • Imhoff JF (2001) Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov. Int J Syst Evol Microbiol 51: 1863–1866

    PubMed  CAS  Google Scholar 

  • Imhoff JF, Petri R and Suling J (1998) Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the alpha-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov, of Rhodospirillum salinarum to Rhodovibrio salexigens. Int J Syst Bacteriol 48: 793–798

    PubMed  Google Scholar 

  • Kamal VS and Wyndham RC (1990) Anaerobic phototrophic metabolism of 3-chlorobenzoate by Rhodopseudomonas palustris WS17. Appl Environ Microbiol 56: 3871–3873

    PubMed  CAS  Google Scholar 

  • Kiley PJ and Beinert H (1998) Oxygen sensing by the global regulator, FNR: The role of the iron-sulfur cluster. FEMS Microbiol Rev 22: 341–352

    PubMed  CAS  Google Scholar 

  • Koch J, Eisenreich W, Bacher A and Fuchs G (1993) Products of enzymatic reduction of benzoyl-Co A, a key reaction in anaerobic aromatic metabolism. Eur J Biochem 221: 649–661

    Google Scholar 

  • Körner H, Sofia HJ and Zumft WG (2003) Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: Exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27: 559–592

    PubMed  Google Scholar 

  • Küver J, Xue JY and Gibson J (1995) Metabolism of cyclohexane carboxylic acid by the photosynthetic bacterium Rhodopseudomonas palustris. Arch Microbiol 164: 337–345

    PubMed  Google Scholar 

  • Laempe D, Eisenreich W, Bacher A and Fuchs G (1998) Cyclohexa-1, 5-diene-1-carbonyl-CoA hydratase [corrected], an enzyme involved in anaerobic metabolism of benzoyl-CoA in the denitrifying bacterium Thauera aromatica. Eur J Biochem 255: 618–627 [published erratum appears in Eur J Biochem (1998) 257: 528]

    PubMed  CAS  Google Scholar 

  • Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres JL, Peres C, Harrison FH, Gibson J and Harwood CS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22: 55–61

    PubMed  CAS  Google Scholar 

  • Madigan MT and Gest H(1988) Selective enrichment and isolation of Rhodopseudomonas palustris using trans-cinnamic acid as sole carbon source. FEMS Microbiol Ecol 53: 53–58

    CAS  Google Scholar 

  • Möbitz H and Boll M (2002) A Birch-like mechanism in enzymatic benzoyl-CoA reduction: A kinetic study of substrate analogues combined with an ab initio model. Biochemistry 41: 1752–1758

    PubMed  Google Scholar 

  • Möbitz H, Friedrich T and Boll M (2004) Substrate binding and reduction of benzoyl-Co A reductase: Evidence for nucleotide-dependent conformational changes. Biochemistry 43: 1376–1385

    PubMed  Google Scholar 

  • Nogales J, Macchi R, Franchi F, Barzaghi D, Fernandez C, Garcia JL, Bertoni G and Diaz E (2007) Characterization of the last step of the aerobic phenylacetic acid degradation pathway. Microbiology 153: 357–365

    PubMed  CAS  Google Scholar 

  • Noh U, Heck S, Giffhorn F and Kohring GW (2002) Phototrophic transformation of phenol to 4-hydroxyphenylacetate by Rhodopseudomonas palustris. Appl Microbiol Biotechnol 58: 830–835

    PubMed  CAS  Google Scholar 

  • Oda Y, de Vries YP, Forney LJ and Gottschal JC (2001) Acquisition of the ability for Rhodopseudomonas palustris to degrade chlorinated benzoic acids as the sole carbon source. FEMS Microbiol Lett 38: 133–139

    CAS  Google Scholar 

  • Oda Y, Meijer WG, Gibson JL, Gottschal JC and Forney LJ (2004) Analysis of diversity among 3-chlorobenzoate-degrading strains of Rhodopseudomonas palustris. Microbial Ecology 47: 68–79

    PubMed  CAS  Google Scholar 

  • Parke D and Ornston LN (2003) Hydroxycinnamate (hca) catabolic genes from Acinetobacter sp. strain ADP1 are repressed by HcaR and are induced by hydroxycinnamoyl-coenzyme A thioesters. Appl Environ Microbiol 69: 5398–5409

    PubMed  CAS  Google Scholar 

  • Pelletier DA and Harwood CS (1998) 2-Ketocyclohexanecarboxyl coenzyme A hydrolase, the ring cleavage enzyme required for anaerobic benzoate degradation by Rhodopseudomonas palustris. J Bacteriol 180: 2330–2336

    PubMed  CAS  Google Scholar 

  • Pelletier DA and Harwood CS (2000) 2-Hydroxycyclohexanecarboxyl coenzyme A dehydrogenase, an enzyme characteristic of the anaerobic benzoate degradation pathway used by Rhodopseudomonas palustris. J Bacteriol 182: 2753–2760

    PubMed  CAS  Google Scholar 

  • Peres CM and Harwood CS (2006) BadM is a transcriptional repressor and one of three regulators that control benzoyl coenzyme A reductase gene expression in Rhodopseudomonas palustris. J Bacteriol 188: 8662–8665

    PubMed  CAS  Google Scholar 

  • Perrotta JA and Harwood CS (1994) Anaerobic metabolism of cyclohex-1-ene-1-carboxylate, a proposed intermediate of benzoate degradation, by Rhodopseudomonas palustris. Appl Environ Microbiol 60: 1775–1782

    PubMed  CAS  Google Scholar 

  • Peters F, Rother, M and Boll M (2004) Selenocysteine-containing proteins in anaerobic benzoate metabolism of Desulfococcus multivorans. J Bacteriol 186: 2156–2163

    PubMed  CAS  Google Scholar 

  • Peters F, Shinoda Y, Mclnerney MJ and Boll M (2007) Cyclohexa-1, 5-diene-l-carbonyl-coenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophus aciditrophicus: Evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes. J Bacteriol 189: 1055–1060

    PubMed  CAS  Google Scholar 

  • Pfenning N (1978) Rhodocycluspurpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28: 283–288

    Google Scholar 

  • Pfennig N, Eimhjellen KE and Liaaen Jensen S (1965) A new isolate of the Rhodospirillum fulvum group and its photosynthetic pigments. Arch Mikrobiol 51: 258–266

    PubMed  CAS  Google Scholar 

  • Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, and Reinhardt R (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 183: 27–36

    PubMed  CAS  Google Scholar 

  • Ramana ChV, Sasikala C, Arunasri K, Anil Kumar P, Srinivas TN, Shivaji S, Gupta P, Suling J and Imhoff JF (2006) Rubrivivax benzoatilyticus sp. nov, an aromatic, hydrocarbon-degrading purple betaproteobacterium. Int J Syst Evol Microbiol 56: 2157–2164

    PubMed  CAS  Google Scholar 

  • Rhee SK and Fuchs G (1999) Phenylacetyl-CoA:acceptor oxidoreductase, a membrane-bound molybdenum-iron-sulfur enzyme involved in anaerobic metabolism of phenylalanine in the denitrifying bacterium Thauera aromatica. Eur J Biochem 262: 507–515

    PubMed  CAS  Google Scholar 

  • Roper DI, Fawcett T and Cooper RA (1993) The Escherichia coli C homoprotocatechuate degradative operon: hpc gene order, direction of transcription and control of expression. Mol. Gen. Genet. 237: 241–250

    PubMed  CAS  Google Scholar 

  • Samanta SK and Harwood CS (2005) Use of the Rhodopseudomonas palustris genome sequence to identify a single amino acid that contributes to the activity of a coenzyme A ligase with chlorinated substrates. Mol Microbiol 55: 1151–1159

    PubMed  CAS  Google Scholar 

  • Schneider S, Mohamed ME and Fuchs G (1997) Anaerobic metabolism of L-phenylalanine via benzoyl-Co A in the denitrifying bacterium Thauera aromatica. Arch Microbiol 168: 310–320

    PubMed  CAS  Google Scholar 

  • Sharma V, Suvarna K, Meganathan R and Hudspeth MES (1992) Menaquinone (Vitamin K2) biosynthesis: Nucleotide sequence and expression of the men B gene from Escherichia coli. J. Bacteriol. 174: 5057–5062

    PubMed  CAS  Google Scholar 

  • Spiro S, Gaston KL, Bell AI, Roberts RE, Busby SJW and Guest JR (1990) Interconversion of the DNA-binding specificities of two related transcriptional regulators, CRP and FNR. Mol Microbiol 4: 1831–1838

    PubMed  CAS  Google Scholar 

  • Tavin D and Buswell AM (1934) The methane fermentation of organic acids and carbohydrates. J Am Chem Soc 56: 1751–1755

    Google Scholar 

  • Trudgill PW (1986) Terpenoid metabolism by Pseudomonas. In: Sokatch JR and Ornston N (eds), The Bacteria (Vol. 10, The Biology of Pseudomonas), pp 483–525. Academic Press, New York

    Google Scholar 

  • Unciuleac M and Boll M (2001) Mechanism of ATP-driven electron transfer catalyzed by the benzene ring-reducing enzyme benzoyl-CoA reductase. Proc Natl Acad Sci USA 98: 13619–13624

    PubMed  CAS  Google Scholar 

  • Unciuleac M, Warkentin E, Page CC, Boll M, and Ermler U (2004) Structure of axanthine oxidase-related4-hydroxybenzoyl-CoA reductase with an additional [4Fe-4S] cluster and an inverted electron flow. Structure 12: 2249–2256

    PubMed  CAS  Google Scholar 

  • van der Woude BJ, de Boer M, van der Put NM, van der Geld FM, Prins RA and Gottschal JC (1994) Anaerobic degradation of halogenated benzoic acids by photoheterotrphic bacteria. FEMS Microbiol Lett 119: 199–208

    PubMed  Google Scholar 

  • VerBerkmoes NC, Shah MB, Lankford PK, Pelletier DA, Strader MB, Tabb DL, McDonald WH, Barton JW, Hurst GB, Hauser L, Davison BH, Beatty JT, Harwood CS, Tabita FR, Hettich RL and Larimer FW (2006) Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states. J Proteome Res 5: 287–298

    PubMed  CAS  Google Scholar 

  • Whittle PJ, Lunt DO and Evans WC (1976) Anaerobic photometabolism of aromatic compounds by Rhodopseudomonas sp. Biochem Soc Trans 4: 490–491

    PubMed  CAS  Google Scholar 

  • Winter J, Popoff MR, Grimont P, Bokkenheuser VD (1991) Clostridium orbiscindens sp. nov., ahuman intestinal bacterium capable of cleaving the flavonoid C-ring. Int J Syst Bacteriol 41: 355–357

    Article  PubMed  CAS  Google Scholar 

  • Wischgoll S, Heintz D, Peters F, Erxleben A, Sarnighausen E, Reski R, Van Dorsselaer A and Boll M (2005) Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol Microbiol 58: 1238–1252

    PubMed  CAS  Google Scholar 

  • Wright GE and Madigan MT (1991) Photocatabolism of aromatic compounds by the phototrophic purple bacterim Rhodomicrobium vannielii. Appl Environ Microbiol 57: 2069–2073

    PubMed  CAS  Google Scholar 

  • Yamanaka K, Moriyama M, Minoshima R and Tsuyuki Y (1983) Isolation and Characterization of a methanol-utilizing phototropic bacterium, Rhodopseudomonas acidophila M402 and its growth on vanillin derivatives. Agric and Biol Chem 47: 1257–1267

    CAS  Google Scholar 

  • Zaar A, Gescher J, Eisenreich W, Bacher A and Fuchs G (2004) New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii. Mol Microbiol 54: 223–238

    PubMed  CAS  Google Scholar 

  • Zengler K, Heider J, Rossello-Mora R and Widdel F (1999) Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch Microbiol 172: 204–212

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline S. Harwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Harwood, C.S. (2009). Degradation of Aromatic Compounds by Purple Nonsulfur Bacteria. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_29

Download citation

Publish with us

Policies and ethics