Skip to main content

Carbon Dioxide Metabolism and its Regulation in Nonsulfur Purple Photosynthetic Bacteria

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

Nonsulfur purple (NSP) photosynthetic bacteria are able to photosynthetically metabolize and grow at the expense of a wide range of reduced and oxidized organic compounds as well as using inorganic carbon dioxide under anaerobic conditions. In addition, these organisms, for the most part, are able to oxidize these compounds under aerobic conditions as well. Thus, NSP bacteria are widely dispersed and survive in diverse environments. Carbon dioxide reduction is important for both photoheterotrophic and photoautotrophic metabolism, and CO2 serves as an essential electron acceptor for the maintenance of cellular redox homeostasis when highly reduced organic carbon is used as the electron donor for growth. Since earlier reviews, much progress towards elucidating molecular mechanisms governing carbon dioxide assimilation has been made, primarily in two representative species, Rhodobacter (Rba.) sphaeroides and Rba. capsulatus. These studies established the importance of the main transcriptional regulator, CbbR, and its interaction with specific promoter sequences. Furthermore, the redox-sensitive two-component global regulator system, RegAB/PrrAB, was shown to be important for controlling cbb operon gene expression and appeared to be linked to the regulation of redox balancing mechanisms. A further level of complexity is found in Rhodopseudomonas (Rps.) palustris, where a unique three-protein two-component system, in addition to CbbR, was recently shown to contribute to the regulation of CO2 fixation. This chapter will focus on recent progress made in understanding the mechanism of regulation of CO2 metabolism in NSP bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

bp:

base pair(s)

CBB:

Calvin-Benson-Bassham

CbbRRS:

Calvin Benson Bassham response regulators/sensor kinase

LTTR:

LysR-type transcriptional regulator

NSP:

nonsulfur purple

PAS:

Per-Arnt-Sim sensing module

Rba. :

Rhodobacter

Rps. :

Rhodopseudomonas

Rubisco:

ribulose 1,5-bisphospate carboxylase/oxygenase

RuBP:

ribulose 1,5-bisphosphate

References

  • Chen JH, Gibson JL, McCue LA and Tabita FR (1991) Identification, expression, and deduced primary structure of transketolase and other enzymes encoded within the form II CO2 fixation operon of Rhodobacter sphaeroides. J Biol Chem 266: 20447–20452

    PubMed  CAS  Google Scholar 

  • Dangel AW, Gibson JL, Janssen AP and Tabita FR (2005) Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognition. Mol Microb 57: 1397–1414

    Article  CAS  Google Scholar 

  • Du S, Bird TH and Bauer CE (1998) DNA binding characteristics of RegA. A constitutively active anaerobic activator of photosynthesis gene expression in Rhodobacter capsulatus. J Biol Chem 273: 18509-18513

    Article  PubMed  CAS  Google Scholar 

  • Dubbs JM and Tabita FR (1998) Two functionally distinct regions upstream the cbb I operon of Rhodobacter sphaeroides regulate gene expression. J Bacteriol 180: 4903–1911

    PubMed  CAS  Google Scholar 

  • Dubbs JM and Tabita FR (2003) Interactions of the cbb II promoter-operator region with CbbR and RegA (PrrA) regulators indicate distinct mechanisms to control expression of the two cbb operons of Rhodobacter sphaeroides. J Biol Chem 278: 16443-16450

    Article  PubMed  CAS  Google Scholar 

  • Dubb SJM and Tabita FR (2004) Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiology Reviews 28: 353–376

    Article  CAS  Google Scholar 

  • Dubbs JM, Bird TH, Bauer CE and Tabita FR (2000) Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbb I promoter-operator region. J Biol Chem 275: 19224–19230

    Article  PubMed  CAS  Google Scholar 

  • Dubbs P, Dubbs JM and Tabita FR (2004) Effector-mediated interaction of CbbRI and CbbRII regulators with target sequences in Rhodobacter capsulatus. J Bacteriol 186: 8026–8035

    Article  PubMed  CAS  Google Scholar 

  • Elsen S, Swem LR, Swem DL and Bauer CE (2004) RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 68: 263–279

    Article  PubMed  CAS  Google Scholar 

  • Eraso JM and Kaplan S (1995) Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: A mutant histidine kinase. J Bacteriol 177: 2695–2706

    PubMed  CAS  Google Scholar 

  • Gibson JL (1995) Genetic analysis of CO2 fixation genes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 1107–1124. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gibson JL and Tabita FR (1993) Nucleotide sequence and functional analysis of CbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides. J Bacteriol 175: 5778–5784

    PubMed  CAS  Google Scholar 

  • Gibson JL and Tabita FR (1996) The molecular regulation of the reductive pentose phosphate pathway in proteobacteria and cyanobacteria. Arch Microbiol 166: 141–150

    Article  PubMed  CAS  Google Scholar 

  • Gibson JL, Falcone DL and Tabita FR (1991) Nucleotide sequence, transcriptional analysis and expression of genes encoded within the form I CO2fixation operon of Rhodobacter sphaeroides. J Biol Chem 266: 14646–14653.

    PubMed  CAS  Google Scholar 

  • Gibson JL, Dubbs JM and Tabita FR (2002) Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth. J Bacteriol 184: 6654–6664

    Article  PubMed  CAS  Google Scholar 

  • Goethals K, Van Montague M and Holsters M (1992) Conserved motifs in a divergent nod box of Azorhizobium caulinodans ORS571 reveal a common structure in promoters regulated by LysR-type proteins. Proc Natl Acad Sci USA 89: 1646–1650

    Article  PubMed  CAS  Google Scholar 

  • Grzeszik C, Jeffke T, Schaferjohann Kusian B and Bowien B (2000) Phosphoenolpyruvate is a signal metabolite in transcriptional control of the cbb CO2 fixation operons in Ralstonia eutropha. J Mol Microbiol Biotechnol 2: 311–320

    PubMed  CAS  Google Scholar 

  • Hallenbeck PL, Lerchen R, Hessler P and Kaplan S (1990) Phosphoribulokinase activity and regulation of CO2 fixation critical for photosynthetic growth of Rhodobacter sphaeroides. J Bacteriol 172: 1749–1761

    PubMed  CAS  Google Scholar 

  • Inoue K, Kouadio JL, Mosley CS and Bauer CE (1995) Isolation and in vitro phosphorylation of sensory transduction components controlling anaerobic induction of light harvesting and reaction center gene expression in Rhodobacter capsulatus. Biochemistry 34: 391–396

    Article  PubMed  CAS  Google Scholar 

  • Joshi H and Tabita FR (1996) A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc Natl Acad Sci USA 93: 14515–14520

    Article  PubMed  CAS  Google Scholar 

  • Jouanneau Y and Tabita FR (1986) Independent regulation of synthesis of form I and form II ribulose bisphosphate carboxylase-oxygenase in Rhodopseudomonas sphaeroides. J Bacteriol 165: 620–624

    PubMed  CAS  Google Scholar 

  • Kusian B and Bowein B (1995) Operator binding of the CbbR protein, which activates the duplicate cbb CO2 assimilation operons of Alcaligenes eutrophus. J Bacteriol 177: 6568–6574

    PubMed  CAS  Google Scholar 

  • Kusano T and Sugawara K (1993) Specific binding of Thiobacllus ferrooxidans RbcR to the intergenic sequence between the rbc operon and the rbcR gene. J Bacteriol 175: 1019–1025

    PubMed  CAS  Google Scholar 

  • Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres JL, Peres C, Harrison FH, Gibson J and Harwood CS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22: 55–61

    Article  PubMed  CAS  Google Scholar 

  • Mosley CS, Suzuki JY and Bauer CE (1994) Identification and molecular genetic characterization of a sensor kinase responsible for coordinately regulating light harvesting and reaction center gene expression in response to anaerobiosis. J Bacteriol 176: 7566–7573

    PubMed  CAS  Google Scholar 

  • Paoli GC, Strom-Morgan N, Shivelyand JM and Tabita FR (1995) Expression of the cbbLcbbS and cbbM genes and distinct organization of the cbb Calvin cycle structural genes of Rhodobacter capsulatus. Arch Microbiol 164: 396–405

    PubMed  CAS  Google Scholar 

  • Paoli GC, Soyer F, Shively JM and Tabita FR (1998a) Rhodobacter capsulatus genes encoding form I ribulose-l, 5-bisphosphate carboxylase/oxygenase (cbbLS) and neighboring genes were acquired by a horizontal gene transfer. Microbiology 144: 219–227

    Article  PubMed  CAS  Google Scholar 

  • Paoli GC, Vichivanives P and Tabita FR (1998b) Physiological control and regulation of the Rhodobacter capsulatus cbb operons. J Bacteriol 180: 4258–4269

    PubMed  CAS  Google Scholar 

  • Pappas CT, Sram J, Moskvin OV, Ivanov PS, Mackenzie RC, Choudhary M, Land ML, Larimer FW, Kaplan S and Gomelsky M (2004) Construction and validation of the Rhodobacter sphaeroides 2.4.1 DNA microarray : Transcriptome flexibility at diverse growth modes. J Bacteriol 186: 4748–4758

    Article  PubMed  CAS  Google Scholar 

  • Qian Y and Tabita FR (1996) A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides. J Bacteriol 178: 12–18

    PubMed  CAS  Google Scholar 

  • Romagnoli S and Tabita FR (2006) A novel three-protein two-component system provides a regulatory twiston an established circuit to modulate expression of the cbb I region of Rhodopseudomonaspalustris CGA010. J Bacteriol 188: 2780–2791

    Article  PubMed  CAS  Google Scholar 

  • Romagnoli S and Tabita FR (2007) Phosphotransfer reactions of the three-protein CbbRRS two-component system from Rhodopseudomonaspalustris CGA010 appear to be controlled by an internal molecular switch on the sensor kinase. J Bacteriol 189: 325–335

    Article  PubMed  CAS  Google Scholar 

  • Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Ann Rev Microbiol 47: 597–626

    Article  CAS  Google Scholar 

  • Shively JM, van Keulen G and Meijer WG (1998) Something from almost nothing: Carbon dioxide fixation in chemoautotrophs. Ann Rev Microbiol 52: 191–230

    Article  CAS  Google Scholar 

  • Smith SA and Tabita FR (2002) Up-regulated expression of the cbb I and cbb II operons during photoheterotrophic growth of a Rubisco deletion mutant of Rhodobacter sphaeroides. J Bacteriol 184: 6721–6724

    Article  PubMed  CAS  Google Scholar 

  • Suwanto A and Kaplan S (1989) Physical and genetic mapping of the Rhodobacter sphaeroides genome: Presence of two unique circular chromosomes. J Bacteriol 171: 5850–5859

    PubMed  CAS  Google Scholar 

  • Suwanto A and Kaplan S (1992) Chromosome transfer in Rhodobacter sphaeroides: Hfr formation and genetic evidence for two unique circular chromosomes. J Bacteriol 174: 1135–1145

    PubMed  CAS  Google Scholar 

  • Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52: 155–189

    PubMed  CAS  Google Scholar 

  • Tabita FR (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 885–914. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Tabita FR, Hanson TE, Li H, Satagopan, S, Singh J and Chan S (2007) Function, structure, and evolution of the Rubisco like proteins and their Rubisco homologs. Microbiol Mol Biol Rev 71: 576–599

    Article  PubMed  CAS  Google Scholar 

  • Terazono K, Hayashi NR and Igarashi Y (2001) CbbR, a LysR-type transcriptional regulator from Hydrogenophilus thermoluteolus, binds two cbb promoter regions. FEMS Microbiol Lett 198: 151–157

    Article  PubMed  CAS  Google Scholar 

  • Tichi MA and Tabita FR (2002) Metabolic signals that lead to control of cbb gene expression in Rhodobacter capsulatus. J Bacteriol 184: 1905–1915

    Article  PubMed  CAS  Google Scholar 

  • van den Berg ERE, Dijkhuizen L and Meijer WG (1993) CbbR, a LysR-type transcriptional activator, is required for expression of the autotrophic CO2 fixation enzymes of Xanthobacter flavus. J Bacteriol 175: 6097–6104

    Google Scholar 

  • van Keulen G, Girbal L, van den Berg ER, Dijkhuizen L and Meijer WG (1998) The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor. J Bacteriol 180: 1411–1417

    PubMed  Google Scholar 

  • Viale AM, Kobayashi H, Akazawa T and Henikoff S (1991) rbcR, a gene coding for a member of the LysR family of transcriptional regulators, is located upstream of the expressed set of ribulose-1, 5-bisphosphate carboxylase/oxygenase genes in the photosynthetic bacterium Chromatium vinosum. J Bacteriol 173: 5224–5229

    PubMed  CAS  Google Scholar 

  • Vichivanives P, Bird TH, Bauer CE and Tabita FR (2000) Multiple regulators and their interaction in vivo and in vitro with the cbb regulons of Rhodobacter capsulatus. J Mol Biol 300: 1079–1099

    Article  PubMed  CAS  Google Scholar 

  • Wang X., Falcone DL and Tabita FR (1993) Reductive pentose phosphate-independent CO2 fixation in Rhodobacter sphaeroides and evidence that ribulose bisphosphate carboxylase/oxygenase activity serves to maintain the redox balance of the cell. J Bacteriol 175: 3372–3379

    PubMed  CAS  Google Scholar 

  • Windhovel U and Bowein B (1991) Identification of cfxR, an activator gene of autotrophic CO2 fixation in Alcaligenes eutrophus. Mol Microbiol 5: 2695–2705

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Robert Tabita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Romagnoli, S., Tabita, F.R. (2009). Carbon Dioxide Metabolism and its Regulation in Nonsulfur Purple Photosynthetic Bacteria. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_28

Download citation

Publish with us

Policies and ethics