Skip to main content

Structural and Mutational Studies of the Cytochrome bc 1 Complex

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

The ubihydroquinone:cytochrome c oxidoreductase, or the cytochrome bc 1, is a widespread multi-subunit, multi-cofactor-bearing, membrane-integral enzyme complex of crucial importance both for photosynthesis and respiration. It is a major contributor of proton motive force that is subsequently used depending on the growth conditions for multiple cellular tasks, including ATP production via photo- or oxidative-phosphorylation. The simplest form of the cytochrome bc 1 is generally found in prokaryotes, and that of the purple nonsulfur anoxygenic photosynthetic bacteria of Rhodobacter species is amenable to diverse multidisciplinary approaches. This chapter is focused on recent progress related to structural and mutational studies on the cytochrome bc 1. Detailed information derived from the three-dimensional (3-D) structures of the bacterial enzyme, which consists of the iron-sulfur protein, cytochrome b and cytochrome c 1 subunits, is integrated with molecular genetic studies that yielded invaluable mutant variants. In particular, the roles of various structural components of the cytochrome bc 1 that affect the unique mobility of the iron-sulfur subunit during catalysis are emphasized. Clearly, the nature of specific protein-protein interactions between the surface loops of the iron-sulfur and the cytochrome b subunits is of importance for this mobility and the steady-state activity of the enzyme. Recent progress illustrates that the cytochrome bc 1 provides an invaluable model system for studying the mechanism of redox driven proton translocation across energy transducing membranes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

3-D:

three-dimensional

Cyt bc 1 :

ubihydroquinone:Cyt c oxidoreductase

Cyt:

cytochrome

ED:

extrinsic domain of the Fe/S protein

EPR:

electron paramagnetic resonance

ESEEM:

electron spin echo envelope modulation

ET:

electron transfer

MOA:

β-methoxyacrylate

n side:

negative side

p side:

positive side

Q:

quinone

QH2 :

hydroquinone

UHDBT:

5-undecyl-6-hydroxy-4,7-dioxobenzothiazole

XXX. pdb:

protein structure data bank access code

References

  • Abergel C, Nitschke W, Malarte G, Bruschi M, Claverie JM and Giudici-Orticoni MT (2003) The structure of Acidithiobacillus ferrooxidans c 4-cytochrome: A model for complex-induced electron transfer tuning. Structure 11: 547–555

    PubMed  CAS  Google Scholar 

  • Ambler RP (1982) The structure and classification of cytochrome c. In: Kaplan NO and Robinson A (eds) From Cyclotrons to Cytochromes, pp 263–282. Academic Press, New York

    Google Scholar 

  • Bachmann J, Bauer B, Zwicker K, Ludwig B and Anderka O (2006) The Rieske protein from Paracoccus denitrificans is inserted into the cytoplasmic membrane by the twin-arginine translocase. FEBS J 273: 4817–4830

    PubMed  CAS  Google Scholar 

  • Baymann F, Lebrun E and Nitschke W (2004) Mitochondrial cytochrome c 1 is a collapsed di-heme cytochrome. Proc Natl Acad Sci USA 101: 17737–17740

    PubMed  CAS  Google Scholar 

  • Berry EA, Huang LS and DeRose VJ (1991) Ubiquinol-cytochrome c oxidoreductase of higher plants. Isolation and characterization of the bc 1 complex from potato tuber mitochondria. J Biol Chem 266: 9064–9077

    PubMed  CAS  Google Scholar 

  • Berry EA, Huang LS, Zhang Z and Kim SH (1999) Structure of the avian mitochondrial cytochrome bc 1 complex. J Bioenerg Biomembr 31: 177–190

    PubMed  CAS  Google Scholar 

  • Berry EA, Guergova-Kuras M, Huang LS and Crofts AR (2000) Structure and function of cytochrome bc complexes. Annu Rev Biochem 69: 1005–1075

    PubMed  CAS  Google Scholar 

  • Berry EA, Huang LS, Saechao LK, Pon NG, Valkova-Valchanova M and Daldal F (2004) X-Ray structure of Rhodobacter capsulatus cytochrome bc 1. Comparison with its mitochondrial and chloroplast counterparts. Photosynth Res 81: 251–275

    PubMed  CAS  Google Scholar 

  • Brandt U, Haase U, Schagger H and von Jagow G (1991) Significance of the ‘Rieske’ iron-sulfur protein for formation and function of the ubiquinol-oxidation pocket of mitochondrial cytochrome c reductase (bc 1 complex). J Biol Chem 266: 19958–19964

    PubMed  CAS  Google Scholar 

  • Brasseur G, Saribas AS and Daldal F (1996) A compilation of mutations located in the cytochrome b subunit of the bacterial and mitochondrial bc 1 complex. Biochim Biophys Acta 1275: 61–69

    PubMed  Google Scholar 

  • Brasseur G, Sled V, Liebl U, Ohnishi T and Daldal F (1997) The amino-terminal portion of the Rieske iron-sulfur protein contributes to the ubihydroquinone oxidation site catalysis of the Rhodobacter capsulatus bc 1 complex. Biochemistry 36: 11685–11696

    PubMed  CAS  Google Scholar 

  • Britt RD, Sauer K, Klein MP, Knaff DB, Kriauciunas A, Yu CA, Yu L and Malkin R (1991) Electron spin echo envelope modulation spectroscopy supports the suggested coordination of two histidine ligands to the Rieske Fe-S centers of the cytochrome b 6 f complex of spinach and the cytochrome bc 1 complexes of Rhodospirillum rubrum, Rhodobacter sphaeroides R-26, and bovine heart mitochondria. Biochemistry 30: 1892–1901

    PubMed  CAS  Google Scholar 

  • Brugna M, Rodgers S, Schricker A, Montoya G, Kazmeier M, Nitschke W and Sinning I (2000) A spectroscopic method for observing the domain movement of the Rieske iron-sulfur protein. Proc Natl Acad Sci USA 97: 2069–2074

    PubMed  CAS  Google Scholar 

  • Carrell CJ, Zhang H, Cramer WA and Smith JL (1997) Biological identity and diversity in photosynthesis and respiration: Structure of the lumen-side domain of the chloroplast Rieske protein. Structure 5: 1613–1625

    PubMed  CAS  Google Scholar 

  • Chen YL, Dincturk HB, Qin H and Knaff DB (1998) The pet operon, encoding the prosthetic group-containing subunits of the cytochrome bc 1 complex, of the purple sulfur bacterium Chromatium vinosum Photosynth Res 57: 139–158

    CAS  Google Scholar 

  • Chen YR, Usui S, Yu CA and Yu L (1994) Role of subunit IV in the cytochrome bc 1 complex from Rhodobacter sphaeroides. Biochemistry 33: 10207–10214

    PubMed  CAS  Google Scholar 

  • Cooley JW, Roberts AG, Bowman MK, Kramer DM and Daldal F (2004) The raised midpoint potential of the [2Fe2S] cluster of cytochrome bc 1 is mediated by both the Qo site occupants and the head domain position of the Fe-S protein subunit. Biochemistry 43: 2217–2227

    PubMed  CAS  Google Scholar 

  • Cooley JW, Ohnishi T and Daldal F (2005) Binding dynamics at the quinone reduction (Qi) site influence the equilibrium interactions of the iron sulfur protein and hydroquinone oxidation (Qo) site of the cytochrome bc 1 complex. Biochemistry 44: 10520–10532

    PubMed  CAS  Google Scholar 

  • Covian R, and Trumpower BL (2006) Regulatory interactions between ubiquinol oxidation and ubiquinone reduction sites in the dimeric cytochrome bc 1 complex. J Biol Chem 281: 30925–30932

    PubMed  CAS  Google Scholar 

  • Cramer WA, Soriano GM, Ponomarev M, Huang D, Zhang H, Martinez SE and Smith JL (1996) Some new structural aspects and old controversies concerning the cytochrome b 6 f complex of oxygenic photosynthesis. Annu Rev Plant Phys Plant Mol Biol 47: 477–508

    CAS  Google Scholar 

  • Cramer WA, Zhang H, Yan J, Kurisu G and Smith JL (2004) Evolution of photosynthesis: Time-independent structure of the cytochrome b 6 f complex. Biochemistry 43: 5921–5929

    PubMed  CAS  Google Scholar 

  • Crofts AR (2004) The cytochrome bc 1 complex: Function in the context of structure. Ann Rev Physiol 66: 689–733

    CAS  Google Scholar 

  • Crofts AR and Berry EA (1998) Structure and function of the cytochrome bc 1 complex of mitochondria and photosynthetic bacteria. Curr Opin Struct Biol 8: 501–509

    PubMed  CAS  Google Scholar 

  • Crofts AR and Meinhardt SW (1982) A Q-cycle mechanism for the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides. Biochem Soc Trans 10: 201–203

    PubMed  CAS  Google Scholar 

  • Crofts AR, Meinhardt SW, Jones KR and Snozzi M (1983) The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides. A modified Q-cycle mechanism. Biochim Biophys Acta 723: 202–218

    CAS  Google Scholar 

  • Crofts AR, Barquera B, Gennis RB, Kuras R, Guergova-Kuras M and Berry EA (1999a) Mechanism of ubiquinol oxidation by the bc 1 complex: different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors. Biochemistry 38: 15807–15826

    PubMed  CAS  Google Scholar 

  • Crofts AR, Hong S, Ugulava N, Barquera B, Gennis R, Guergova-Kuras M and Berry EA (1999b) Pathways for proton release during ubihydroquinone oxidation by the bc 1 complex. Proc Natl Acad Sci USA 96: 10021–10026

    PubMed  CAS  Google Scholar 

  • Crofts AR, Hong S, Zhang Z and Berry EA (1999c) Physicochemical aspects of the movement of the rieske iron sulfur protein during quinol oxidation by the bc 1 complex from mitochondria and photosynthetic bacteria. Biochemistry 38: 15827–15839

    PubMed  CAS  Google Scholar 

  • Crofts AR, Guergova-Kuras M, Kuras R, Ugulava N, Li J and Hong S (2000) Proton-coupled electron transfer at the Qo site: what type of mechanism can account for the high activation barrier? Biochim Biophys Acta 1459: 456–466

    PubMed  CAS  Google Scholar 

  • Crofts AR, Shinkarev VP, Dikanov SA, Samoilova RI and Kolling D (2002) Interactions of quinone with the iron-sulfur protein of the bc 1 complex: Is the mechanism spring-loaded? Biochim Biophys Acta 1555: 48–53

    PubMed  CAS  Google Scholar 

  • Crofts AR, Lhee S, Crofts SB, Cheng J and Rose S (2006) Proton pumping in the bc 1 complex: A new gating mechanism that prevents short circuits. Biochim Biophys Acta 1757: 1019–1034

    PubMed  CAS  Google Scholar 

  • Daldal F, Tokito MK, Davidson E and Faham M (1989) Mutations conferring resistance to quinol oxidation (Qz) inhibitors of the Cyt bc 1 complex of Rhodobacter capsulatus. EMBO J 8: 3951–3961

    PubMed  CAS  Google Scholar 

  • Darrouzet E and Daldal F (2002) Movement of the iron-sulfur subunit beyond the ef loop of cytochrome b is required for multiple turnovers of the bc 1 complex but not for single turnover Q1 site catalysis. J Biol Chem 277: 3471–3476

    PubMed  CAS  Google Scholar 

  • Darrouzet E and Daldal F (2003) Protein-protein interactions between cytochrome b and the Fe-S protein subunits during QH2 oxidation and large-scale domain movement in the bc 1 complex. Biochemistry 42: 1499–1507

    PubMed  CAS  Google Scholar 

  • Darrouzet E, Mandaci S, Li J, Qin H, Knaff DB and Daldal F (1999) Substitution of the sixth axial ligand of Rhodobacter capsulatus cytochrome c 1 heme yields novel cytochrome c 1 variants with unusual properties. Biochemistry 38: 7908–7917

    PubMed  CAS  Google Scholar 

  • Darrouzet E, Valkova-Valchanova M and Daldal F (2000a) Probing the role of the Fe-S subunit hinge region during Qo site catalysis in Rhodobacter capsulatus bc 1 complex. Biochemistry 39: 15475–15483

    PubMed  CAS  Google Scholar 

  • Darrouzet E, Valkova-Valchanova M, Moser CC, Dutton PL and Daldal F (2000b) Uncovering the [2Fe2S] domain movement in cytochrome bc 1 and its implications for energy conversion. Proc Natl Acad Sci USA 97: 4567–4572

    PubMed  CAS  Google Scholar 

  • Darrouzet E, Moser CC, Dutton PL and Daldal F (2001) Large scale domain movement in cytochrome bc 1: A new device for electron transfer in proteins. Trends Biochem Sci 26: 445–451

    PubMed  CAS  Google Scholar 

  • Darrouzet E, Valkova-Valchanova M and Daldal F (2002) The [2Fe-2S] cluster Em as an indicator of the iron-sulfur subunit position in the ubihydroquinone oxidation site of the cytochrome bc 1 complex. J Biol Chem 277: 3464–3470

    PubMed  CAS  Google Scholar 

  • Darrouzet E, Cooley JW and Daldal F (2004) The cytochrome bc 1 complex and its homologue the b 6 f complex: Similarities and differences. Photosynth Res 79: 25–44

    PubMed  CAS  Google Scholar 

  • Davidson E, Ohnishi T, Atta-Asafo-Adjei E and Daldal F (1992a) Potential ligands to the [2Fe-2S] Rieske cluster of the cytochrome bc 1 complex of Rhodobacter capsulatus probed by site-directed mutagenesis. Biochemistry 31: 3342–3351

    PubMed  CAS  Google Scholar 

  • Davidson E, Ohnishi T, Tokito M and Daldal F (1992b) Rhodobacter capsulatus mutants lacking the Rieske FeS protein form a stable cytochrome bc 1 subcomplex with an intact quinone reduction site. Biochemistry 31: 3351–3358

    PubMed  CAS  Google Scholar 

  • Denke E, Merbitz-Zahradnik T, Hatzfeld OM, Snyder CH, Link TA and Trumpower BL (1998) Alteration of the midpoint potential and catalytic activity of the Rieske iron-sulfur protein by changes of amino acids forming hydrogen bonds to the iron-sulfur cluster. J Biol Chem 273: 9085–9093

    PubMed  CAS  Google Scholar 

  • Dutton PL, Moser CC, Sled VD, Daldal F and Ohnishi T (1998) A reductant-induced oxidation mechanism for complex I. Biochim Biophys Acta 1364: 245–257

    PubMed  CAS  Google Scholar 

  • Elberry M, Xiao K, Esser L, Xia D, Yu L and Yu CA (2006a) Generation, characterization and crystallization of a highly active and stable cytochrome bc 1 complex mutant from Rhodobacter sphaeroides. Biochim Biophys Acta 1757: 835–840

    PubMed  CAS  Google Scholar 

  • Elberry M, Yu L and Yu CA (2006b) The disulfide bridge in the head domain of Rhodobacter sphaeroides cytochrome c 1 is needed to maintain its structural integrity. Biochemistry 45: 4991–4997

    PubMed  CAS  Google Scholar 

  • Esser L, Quinn B, Li YF, Zhang M, Elberry M, Yu L, Yu CA and Xia D (2004) Crystallographic studies of quinol oxidation site inhibitors: A modified classification of inhibitors for the cytochrome bc 1 complex. J Mol Biol 341: 281–302

    PubMed  CAS  Google Scholar 

  • Esser L, Gong X, Yang S, Yu L, Yu CA and Xia D (2006) Surface-modulated motion switch: Capture and release of iron-sulfur protein in the cytochrome bc 1 complex. Proc Natl Acad Sci USA 103: 13045–13050

    PubMed  CAS  Google Scholar 

  • Gao X, Wen X, Yu C, Esser L, Tsao S, Quinn B, Zhang L, Yu L and Xia D (2002) The crystal structure of mitochondrial cytochrome bc 1 in complex with famoxadone: The role of aromatic-aromatic interaction in inhibition. Biochemistry 41: 11692–11702

    PubMed  CAS  Google Scholar 

  • Gao X, Wen X, Esser L, Quinn B, Yu L, Yu CA and Xia D (2003) Structural basis for the quinone reduction in the bc 1 complex: A comparative analysis of crystal structures of mitochondrial cytochrome bc 1 with bound substrate and inhibitors at the Qi site. Biochemistry 42: 9067–9080

    PubMed  CAS  Google Scholar 

  • Gennis RB, Barquera B, Hacker B, Van Doren SR, Arnaud S, Crofts AR, Davidson E, Gray KA and Daldal F (1993) The bc 1 complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus. J Bioenerg Biomembr 25: 195–209

    PubMed  CAS  Google Scholar 

  • Gong X, Yu L, Xia D and Yu CA (2005) Evidence for electron equilibrium between the two hemes b L in the dimeric cytochrome bc 1 complex. J Biol Chem 280: 9251–9257

    PubMed  CAS  Google Scholar 

  • Gray KA, Dutton PL and Daldal F (1994) Requirement of histidine 217 for ubiquinone reductase activity (Qi site) in the cytochrome bc 1 complex. Biochemistry 33: 723–733

    PubMed  CAS  Google Scholar 

  • Gurbiel RJ, Ohnishi T, Robertson DE, Daldal F and Hoffman BM (1991) Q-band ENDOR spectra of the Rieske protein from Rhodobactor capsulatus ubiquinol-cytochrome c oxidoreductase show two histidines coordinated to the [2Fe-2S] cluster. Biochemistry 30: 11579–11584

    PubMed  CAS  Google Scholar 

  • Hinkle PC (2005) P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1706: 1–11

    PubMed  CAS  Google Scholar 

  • Hochkoeppler A, Zannoni D, Ciurli S, Meyer TE, Cusanovich MA and Tollin G (1996) Kinetics of photo-induced electron transfer from high-potential iron-sulfur protein to the photosynthetic reaction center of the purple phototroph Rhodoferax fermentans. Proc Natl Acad Sci USA 93: 6998–7002

    PubMed  CAS  Google Scholar 

  • Huang LS, Cobessi D, Tung EY and Berry EA (2005) Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc 1 complex: A new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. J Mol Biol 351: 573–597

    PubMed  CAS  Google Scholar 

  • Hunsicker-Wang LM, Heine A, Chen Y, Luna EP, Todaro T, Zhang YM, Williams PA, McRee DE, Hirst J, Stout CD and Fee JA (2003) High-resolution structure of the soluble, respiratory-type Rieske protein from Thermus thermophilus: Analysis and comparison. Biochemistry 42: 7303–7317

    PubMed  CAS  Google Scholar 

  • Hunte C, Koepke J, Lange C, Rossmanith T and Michel H (2000) Structure at 2.3 Å resolution of the cytochrome bc 1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure 8: 669–684

    PubMed  CAS  Google Scholar 

  • Iwata M, Bjorkman J and Iwata S (1999) Conformational change of the Rieske [2Fe-2S] protein in cytochrome bc 1 complex. J Bioenerg Biomembr 31: 169–175

    PubMed  CAS  Google Scholar 

  • Iwata S, Saynovits M, Link TA and Michel H (1996) Structure of a water soluble fragment of the ‘Rieske’ iron-sulfur protein of the bovine heart mitochondrial cytochrome bc 1 complex determined by MAD phasing at 1.5 Å resolution. Structure 4: 567–579

    PubMed  CAS  Google Scholar 

  • Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S and Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc 1 complex. Science 281: 64–71

    PubMed  CAS  Google Scholar 

  • Jenney FE Jr. and Daldal F (1993) A novel membrane-associated c-type cytochrome, Cyt c y, can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. EMBO J 12: 1283–1292

    PubMed  CAS  Google Scholar 

  • Jenney FE Jr., Prince RC and Daldal F (1994) Roles of the soluble cytochrome c 2 and membrane-associated cytochrome c y of Rhodobacter capsulatus in photosynthetic electron transfer. Biochemistry 33: 2496–2502

    PubMed  CAS  Google Scholar 

  • Kadziola A and Larsen S (1997) Crystal structure of the dihaem cytochrome c 4 from Pseudomonas stutzeri determined at 2.2 Å resolution. Structure 5: 203–216

    PubMed  CAS  Google Scholar 

  • Kerfeld CA, Chan C, Hirasawa M, Kleis-SanFrancisco S, Yeates TO and Knaff DB (1996) Isolation and characterization of soluble electron transfer proteins from Chromatium purpuratum. Biochemistry 35: 7812–7818

    PubMed  CAS  Google Scholar 

  • Kim H, Xia D, Yu CA, Xia JZ, Kachurin AM, Zhang L, Yu L and Deisenhofer J (1998) Inhibitor binding changes domain mobility in the iron-sulfur protein of the mitochondrial bc 1 complex from bovine heart. Proc Natl Acad Sci USA 95: 8026–8033

    PubMed  CAS  Google Scholar 

  • Kolling DJ, Brunzelle JS, Lhee S, Crofts AR and Nair SK (2007) Atomic resolution structures of Rieske iron-sulfur protein: Role of hydrogen bonds in tuning the redox potential of iron-sulfur clusters. Structure 15: 29–38

    PubMed  CAS  Google Scholar 

  • Konishi K, Van Doren SR, Kramer DM, Crofts AR and Gennis RB (1991) Preparation and characterization of the water-soluble heme-binding domain of cytochrome c 1 from the Rhodobacter sphaeroides bc 1 complex. J Biol Chem 266: 14270–14276

    PubMed  CAS  Google Scholar 

  • Kuras R, Guergova-Kuras M and Crofts AR (1998) Steps toward constructing a cytochrome b 6 f complex in the purple bacterium Rhodobacter sphaeroides: An example of the structural plasticity of a membrane cytochrome. Biochemistry 37: 16280–16288

    PubMed  CAS  Google Scholar 

  • Kurisu G, Zhang H, Smith JL and Cramer WA (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: Tuning the cavity. Science 302: 1009–1014

    PubMed  CAS  Google Scholar 

  • Lange C and Hunte C (2002) Crystal structure of the yeast cytochrome bc 1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci USA 99: 2800–2805

    PubMed  CAS  Google Scholar 

  • Lange C, Nett JH, Trumpower BL and Hunte C (2001) Specific roles of protein-phospholipid interactions in the yeast cytochrome bc 1 complex structure. EMBO J 20: 6591–6600

    PubMed  CAS  Google Scholar 

  • Lee DW, Ozturk Y, Mamedova A, Osyczka A, Cooley JW and Daldal F (2006) A functional hybrid between the cytochrome bc 1 complex and its physiological membrane-anchored electron acceptor cytochrome c y in Rhodobacter capsulatus. Biochim Biophys Acta 1757: 346–352

    PubMed  CAS  Google Scholar 

  • Li J, Darrouzet E, Dhawan IK, Johnson MK, Osyczka A, Daldal F and Knaff DB (2002) Spectroscopic and oxidation-reduction properties of Rhodobacter capsulatus cytochrome c 1 and its M183K and M183H variants. Biochim Biophys Acta 1556: 175–186

    PubMed  CAS  Google Scholar 

  • Li J, Osyczka A, Conover RC, Johnson MK, Qin H, Daldal F and Knaff DB (2003) Role of acidic and aromatic amino acids in Rhodobacter capsulatus cytochrome c 1. A site-directed mutagenesis study. Biochemistry 42: 8818–8830

    PubMed  CAS  Google Scholar 

  • Liebl U, Sled V, Brasseur G, Ohnishi T and Daldal F (1997) Conserved nonliganding residues of the Rhodobacter capsulatus Rieske iron-sulfur protein of the bc 1 complex are essential for protein structure, properties of the [2Fe-2S] cluster, and communication with the quinone pool. Biochemistry 36: 11675–11684

    PubMed  CAS  Google Scholar 

  • Link TA and Iwata S (1996) Functional implications of the structure of the ‘Rieske’ iron-sulfur protein of bovine heart mitochondrial cytochrome bc 1 complex. Biochim Biophys Acta 1275: 54–60

    PubMed  Google Scholar 

  • Liu X, Yu C-A and Yu L (2004) The role of extra fragment at the C-terminal of cytochrome b (residues 421–445) in the cytochrome bc 1 complex from Rhodobacter sphaeroides. J Biol Chem 279: 47363–47371

    PubMed  CAS  Google Scholar 

  • Mather MW, Darrouzet E, Valkova-Valchanova M, Cooley JW, McIntosh MT, Daldal F and Vaidya AB (2005) Uncovering the molecular mode of action of the antimalarial drug atovaquone using a bacterial system. J Biol Chem 280: 27458–27465

    PubMed  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191: 144–148

    PubMed  CAS  Google Scholar 

  • Mitchell P (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol 62: 327–367

    PubMed  CAS  Google Scholar 

  • Ohnishi T, Brandt U and von Jagow G (1988) Studies on the effect of stigmatellin derivatives on cytochrome b and the Rieske iron-sulfur cluster of cytochrome c reductase from bovine heart mitochondria. Eur J Biochem 176: 385–389

    PubMed  CAS  Google Scholar 

  • Osyczka A, Dutton PL, Moser CC, Darrouzet E and Daldal F (2001) Controlling the functionality of cytochrome c 1 redox potentials in the Rhodobacter capsulatus bc 1 complex through disulfide anchoring of a loop and a beta-branched amino acid near the heme-ligating methionine. Biochemistry 40: 14547–14556

    PubMed  CAS  Google Scholar 

  • Osyczka A, Moser CC, Daldal F and Dutton PL (2004) Reversible redox energy coupling in electron transfer chains. Nature 427: 607–612

    PubMed  CAS  Google Scholar 

  • Osyczka A, Zhang H, Mathe C, Rich PR, Moser CC and Dutton PL (2006) Role of the PEWY glutamate in hydroquinone-quinone oxidation-reduction catalysis in the Qo Site of cytochrome bc 1. Biochemistry 45: 10492–10503

    PubMed  CAS  Google Scholar 

  • Ouchane S, Agalidis I and Astier C (2002) Natural resistance to inhibitors of the ubiquinol cytochrome c oxidoreductase of Rubrivivax gelatinosus: Sequence and functional analysis of the cytochrome bc 1 complex. J Bacteriol 184: 3815–3822

    PubMed  CAS  Google Scholar 

  • Palsdottir H, Lojero CG, Trumpower BL and Hunte C (2003) Structure of the yeast cytochrome bc 1 complex with a hydroxyquinone anion Qo site inhibitor bound. J Biol Chem 278: 31303–31311

    PubMed  CAS  Google Scholar 

  • Rieske JS, MacLennan DH and Coleman R (1964) Isolation and properties of an iron-protein from the (reduced coenzyme Q)-cytochrome c reductase complex of the respiratory chain. Biochem Biophys Res Commun 15: 338–344

    Google Scholar 

  • Robertson DE, Ding H, Chelminski PR, Slaughter C, Hsu J, Moomaw C, Tokito M, Daldal F and Dutton PL (1993) Hydroubiquinone-cytochrome c 2 oxidoreductase from Rhodobacter capsulatus: Definition of a minimal, functional isolated preparation. Biochemistry 32: 1310–1317

    PubMed  CAS  Google Scholar 

  • Saraste M (1999) Oxidative phosphorylation at the fin de siècle. Science 283: 1488–1493

    PubMed  CAS  Google Scholar 

  • Saribas AS, Ding H, Dutton PL and Daldal F (1997) Substitutions at position 146 of cytochrome b affect drastically the properties of heme b L and the Qo site of Rhodobacter capsulatus cytochrome bc 1 complex. Biochim Biophys Acta 1319: 99–108

    PubMed  CAS  Google Scholar 

  • Saribas AS, Valkova-Valchanova M, Tokito MK, Zhang Z, Berry EA and Daldal F (1998) Interactions between the cytochrome b, cytochrome c 1, and Fe-S protein subunits at the ubihydroquinone oxidation site of the bc 1 complex of Rhodobacter capsulatus. Biochemistry 37: 8105–8114

    PubMed  CAS  Google Scholar 

  • Saribas AS, Mandaci S and Daldal F (1999) An engineered cytochrome b 6 c 1 complex with a split cytochrome b is able to support photosynthetic growth of Rhodobacter capsulatus. J Bacteriol 181: 5365–5372

    PubMed  CAS  Google Scholar 

  • Schagger H, Brandt U, Gencic S and von Jagow G (1995) Ubiquinol-cytochrome c reductase from human and bovine mitochondria. Methods Enzymol 260: 82–96

    PubMed  CAS  Google Scholar 

  • Schutz M, Brugna M, Lebrun E, Baymann F, Huber R, Stetter KO, Hauska G, Toci R, Lemesle-Meunier D, Tron P, Schmidt C and Nitschke W (2000) Early evolution of cytochrome bc complexes. J Mol Biol 300: 663–675

    PubMed  CAS  Google Scholar 

  • Shinkarev VP, Ugulava NB, Takahashi E, Crofts AR and Wraight CA (2000) Aspartate-187 of cytochrome b is not needed for DCCD inhibition of ubiquinol: cytochrome c oxidoreductase in Rhodobacter sphaeroides chromatophores. Biochemistry 39: 14232–14237

    PubMed  CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL and Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426: 413–418

    PubMed  CAS  Google Scholar 

  • Thony-Meyer L (2002) Cytochrome c maturation: A complex pathway for a simple task? Biochem Soc Trans 30: 633–638

    PubMed  CAS  Google Scholar 

  • Tian H, White S, Yu L and Yu CA (1999) Evidence for the head domain movement of the Rieske iron-sulfur protein in electron transfer reaction of the cytochrome bc 1 complex. J Biol Chem 274: 7146–7152

    PubMed  CAS  Google Scholar 

  • Tokito MK and Daldal F (1993) Roles in inhibitor recognition and quinol oxidation of the amino acid side chains at positions of Cyt b providing resistance to Qo-inhibitors of the bc 1 complex from Rhodobacter capsulatus. Mol Microbiol 9: 965–978

    PubMed  CAS  Google Scholar 

  • Trumpower BL, Edwards CA and Ohnishi T (1980) Reconstitution of the iron-sulfur protein responsible for the g = 1.90 electron paramagetic resonance signal and associated cytochrome c reductase activities to depleted succinate-cytochrome c reductase complex. J Biol Chem 255: 7487–7489

    PubMed  CAS  Google Scholar 

  • Turkarslan S, Sanders C and Daldal F (2006) Extracytoplasmic prosthetic group ligation to apoproteins: Maturation of c-type cytochromes. Mol Microbiol 60: 537–541

    PubMed  CAS  Google Scholar 

  • Valkova-Valchanova MB, Saribas AS, Gibney BR, Dutton PL and Daldal F (1998) Isolation and characterization of a two-subunit cytochrome bc 1 subcomplex from Rhodobacter capsulatus and reconstitution of its ubihydroquinone oxidation (Qo) site with purified Fe-S protein subunit. Biochemistry 37: 16242–16251

    PubMed  CAS  Google Scholar 

  • Von Jagow G and Ohnishi T (1985) The chromone inhibitor stigmatellin-binding to the ubiquinol oxidation center at the C-side of the mitochondrial membrane. FEBS Lett 185: 311–315

    Google Scholar 

  • Von Jagow G, Ljungdahl PO, Graf P, Ohnishi T and Trumpower BL (1984) An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc 1 complex. J Biol Chem 259: 6318–6326

    Google Scholar 

  • Von Jagow G, Gribble GW and Trumpower BL (1986) Mucidin and strobilurin A are identical and inhibit electron transfer in the cytochrome bc 1 complex of the mitochondrial respiratory chain at the same site as myxothiazol. Biochemistry 25: 775–780

    Google Scholar 

  • Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L and Deisenhofer J (1997) Crystal structure of the cytochrome bc 1 complex from bovine heart mitochondria. Science 277: 60–66

    PubMed  CAS  Google Scholar 

  • Xiao K, Yu L and Yu CA (2000) Confirmation of the involvement of protein domain movement during the catalytic cycle of the cytochrome bc 1 complex by the formation of an intersubunit disulfide bond between cytochrome b and the iron-sulfur protein. J Biol Chem 275: 38597–38604

    PubMed  CAS  Google Scholar 

  • Xiao K, Chandrasekaran A, Yu L and Yu CA (2001) Evidence for the intertwined dimer of the cytochrome bc 1 complex in solution. J Biol Chem 276: 46125–46131

    PubMed  CAS  Google Scholar 

  • Xiao K, Liu X, Yu CA and Yu L (2004) The extra fragment of the iron-sulfur protein (residues 96–107) of Rhodobacter sphaeroides cytochrome bc 1 complex is required for protein stability. Biochemistry 43: 1488–1495

    PubMed  CAS  Google Scholar 

  • Yu CA, Xia JZ, Kachurin AM, Yu L, Xia D, Kim H and Deisenhofer J (1996) Crystallization and preliminary structure of beef heart mitochondrial cytochrome bc 1 complex. Biochim Biophys Acta 1275: 47–53

    PubMed  Google Scholar 

  • Zannoni D and Daldal F (1993) The role of c-type cytochromes in catalyzing oxidative and photosynthetic electron transport in the dual functional plasmamembrane of facultative phototrophs. Arch Microbiol 160: 413–423

    PubMed  CAS  Google Scholar 

  • Zhang H, Osyczka A, Moser CC and Dutton PL (2006) Resilience of Rhodobacter sphaeroides cytochrome bc 1 to heme c 1 ligation changes. Biochemistry 45: 14247–14255

    PubMed  CAS  Google Scholar 

  • Zhang Z, Huang L, Shulmeister VM, Chi YI, Kim KK, Hung LW, Crofts AR, Berry EA and Kim SH (1998) Electron transfer by domain movement in cytochrome bc 1. Nature 392: 677–684

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fevzi Daldal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Berry, E.A., Lee, DW., Huang, LS., Daldal, F. (2009). Structural and Mutational Studies of the Cytochrome bc 1 Complex. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_22

Download citation

Publish with us

Policies and ethics