Skip to main content

Spectroscopy and Dynamics of Excitation Transfer and Trapping in Purple Bacteria

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

In this chapter we discuss the transfer and trapping of excitation energy in the light-harvesting antenna of purple bacteria. The determination of high-resolution X-ray crystal structures of a variety of bacterial light-harvesting complexes has allowed an interpretation of the steady-state and time-resolved picosecond/femtosecond spectral responses of these complexes at a quantitative level using the disordered exciton model in combination with the generalized Förster and modified Redfield theories. Thus a consistent physical picture of energy transfer and trapping has been obtained including a precise assignment of the energy transfer pathways together with a direct visualization of the full excitation dynamics where various regimes ranging from coherent motion of the delocalized exciton to the hopping of localized excitations are superimposed. In a single complex it is possible to observe the switching between these regimes driven by slow conformational motions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

B850, B800:

spectral bands with the 850 or 800 nm absorption

BChl:

bacteriochlorophyll

Blc. :

Blastochloris

CD:

circular dichroism

FL:

fluorescence

LH1:

core light-harvesting complex of purple bacteria

LH2:

peripheral light-harvesting complex of purple bacteria

PR:

participation ratio

Qy, Qx, By, Bx:

four electronic transitions of BChl

Rba. :

Rhodobacter

RC:

reaction center

Rps. :

Rhodopseudomonas

Rsp. :

Rhodospirillum

TA:

transient absorption

References

  • Abdurakhmanov IA, Danielius RV and Razjivin AP (1989) Efficiency of excitation trapping by reaction centers of complex B890 from Chromatium minutissimum. FEBS Letters 245: 47–50

    CAS  Google Scholar 

  • Agarwal R, Yang M, Xu QH and Fleming GR (2001) Three pulse photon echo peak shift study of the B800 band of the LH2 complex of Rps. acidophila at room temperature: A coupled master equation and nonlinear optical response function approach. J Phys Chem B 105: 1887–1894

    CAS  Google Scholar 

  • Alden RG, Johnson E, Nagarajan V, Parson WW, Law CJ and Cogdell RJ (1997) Calculation of spectroscopic properties of the LH2 bacteriochlorophyll-protein antenna complex of Rhodopseudomonas acidophila. J Phys Chem B 101: 4667–4680

    CAS  Google Scholar 

  • Beekman LMP, Van Mourik F, Jones MR, Visser HM, Hunter CN and Van Grondelle R (1994) Trapping kinetics in mutants of the photosynthetic purple bacterium Rhodobacter sphaeroides: Influence of the charge separation rate and consequences for the rate-limiting step in the light-harvesting process. Biochemistry 33: 3143–3147

    PubMed  CAS  Google Scholar 

  • Beekman LMP, Frese RN, Fowler GJS, Picorel R, Cogdell RJ, Van Stokkum IHM, Hunter CN and Van Grondelle R (1997) Characterization of the light-harvesting antennas of photosynthetic purple bacteria by Stark spectroscopy. 2. LH2 complexes: Influence of the protein environment. J Phys Chem B 101: 7293–7301

    CAS  Google Scholar 

  • Bergström H, Van Grondelle R and Sundström V (1989) Characterization of excitation energy trapping in photosynthetic purple bacteria at 77 K. FEBS Lett 250: 503–508

    Google Scholar 

  • Book LD, Ostafin AE, Ponomarenko N, Norris JR and Scherer NF (2000) Exciton delocalization and initial dephasing dynamics of purple bacterial LH2. J Phys Chem B 104: 8295–8307

    CAS  Google Scholar 

  • Bopp MA, Jia Y, Li L, Cogdell RJ and Hochstrasser RM (1997) Fluorescence and photobleaching dynamics of single light-harvesting complexes. Proc Natl Acad Sci USA 94: 10630–10635

    PubMed  CAS  Google Scholar 

  • Bopp MA, Sytnik A, Howard TD, Cogdell RJ and Hochstrasser RM (1999) The dynamics of structural deformations of immobilized single light-harvesting complexes. Proc Natl Acad Sci USA 96: 11271–11276

    PubMed  CAS  Google Scholar 

  • Borisov AY, Freiberg AM, Godik VI, Rebane KK, and Timpmann KN (1985) Kinetics and picosecond bacteriochlorophyll fluorescence in vivo as a function of reaction center state. Biochim Biophys Acta 809: 221–229

    Google Scholar 

  • Bradforth SE, Jimenez R, Van Mourik F, Van Grondelle R and Fleming GR (1995) Excitation transfer in the core light-harvesting complex (LH-1) of Rhodobacter sphaeroides: An ultrafast fluorescence depolarization and annihilation study. J Phys Chem 99: 16179–16191

    CAS  Google Scholar 

  • BrĂĽggemann B and May V (2004) Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system. J Chem Phys 120: 2325–2336

    PubMed  Google Scholar 

  • Chachisvilis M and Sundström V (1996) Femtosecond vibrational dynamics and relaxation in the core light-harvesting complex of photosynthetic purple bacteria. Chem Phys Lett 261: 165–174

    CAS  Google Scholar 

  • Chachisvilis M, Pullerits T, Jones MR, Hunter CN and Sundström V (1994) Vibrational dynamics in the light-harvesting complexes of the photosynthetic bacterium Rhodobacter sphaeroides. Chem Phys Lett 224: 345–351

    CAS  Google Scholar 

  • Chachisvilis M, Fidder H, Pullerits T and Sundström V (1995) Coherent nuclear motions in light-harvesting pigments and dye molecules, probed by ultrafast spectroscopy. J Raman Spectroscopy 26: 513–522

    CAS  Google Scholar 

  • Chachisvilis M, KĂĽhn O, Pullerits T and Sundström V (1997) Excitons in photosynthetic purple bacteria: Wavelike motion or incoherent hopping? J Phys Chem B 101: 7275–7283

    CAS  Google Scholar 

  • Cheng YC and Silbey RJ (2006) Coherence in the B800 ring of purple bacteria LH2. Phys Rev Lett 96: 028103(1–4)

    Google Scholar 

  • Dahlbom M, Pullerits T, Mukamel S and Sundström V (2001) Exciton delocalization in the B850 light-harvesting complex: comparison of different measures. J Phys Chem B 105: 5515–5524

    CAS  Google Scholar 

  • Damjanovic A, Kosztin I, Kleinekathoefer U and Schulten K (2002) Excitons in a photosynthetic light-harvesting system: A combined molecular dynamics, quantum chemistry, and polaron model study. Phys Rev E 65: 031919(1–24)

    Google Scholar 

  • Danielius RV and Razjivin AP (1987) New data on the state of excitations in the light-harvesting antenna and their trapping by reaction centers. In: Rudzikas Z, Piscarskas AS and Baltramiejunas R (eds) Ultrafast Phenomena in Spectroscopy, pp 231–239. Word Scientific, Singapore

    Google Scholar 

  • Davydov AS (1971) Theory of Molecular Excitons. Plenum Press, New York

    Google Scholar 

  • De Caro CD, Visschers RW, Van Grondelle R and Völker S (1994) Interand intraband energy transfer in LH2-antenna complexes of purple bacteria. A fluorescence line-narrowing and holeburning study. J Phys Chem 98: 10584–10590

    Google Scholar 

  • Dracheva TV, Novoderezhkin VI and Razjivin AP (1995) Exciton theory of spectra and energy transfer in photosynthesis: Spectral hole burning in the antenna of purple bacteria. Chem Phys 194: 223–235

    CAS  Google Scholar 

  • Dracheva TV, Novoderezhkin VI and Razjivin AP (1996) Exciton delocalization in the antenna of purple bacteria: Exciton spectra calculation using X-ray dataand experimental site inhomogeneity. FEBS Lett 378: 81–84

    Google Scholar 

  • Dracheva TV, Novoderezhkin VI and Razjivin AP (1997) Exciton delocalization in the light-harvesting LH2 complex of photosynthetic purple bacteria. Photochem Photobiol 66: 141–146

    Google Scholar 

  • Förster T (1965) Delocalized Excitation and Excitation Transfer. In SinanoÄźlu (ed) Modern Quantum Chemistry, Part III. B. Action of Light and Organic Crystals, pp 93–137. Academic Press, New York.

    Google Scholar 

  • Freiberg A, Rätsep M, Timpmann K, Trinkunas G and Woodbury NW (2003) Self-trapped excitons in LH2 antenna complexes between 5 K and ambient temperature. J Phys Chem B 107: 11510–11519

    CAS  Google Scholar 

  • Georgakopoulou S, Frese RN, Johnson E, Koolhaas MHC, Cogdell RJ, Van Grondelle R and Van der Zwan G (2002) Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria. Biophys J 82: 2184–2197

    PubMed  CAS  Google Scholar 

  • Gerken U, Jelezko F, Götze B, Branschädel M, Tietz C, Ghosh R and Wrachtrup J (2003a) Membrane environment reduces the accessible conformational space available to an integral membrane protein. J Phys Chem B 107: 338–343

    CAS  Google Scholar 

  • Gerken U, Lupo D, Tietz C, Wrachtrup J and Ghosh R (2003b) Circular symmetry of the light-harvesting 1 complex from Rhodospirillum rubrum is not perturbed by interaction with the reaction center. Biochemistry 42: 10354–10360

    PubMed  CAS  Google Scholar 

  • Hess S, Feldchtein F, Babin A, Nurgaleev I, Pullerits T, Sergeev A and Sundström V (1993) Femtosecond energy transfer within the LH2 peripheral antenna of the photosynthetic purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris LL. Chem Phys Lett 216: 247–257

    CAS  Google Scholar 

  • Hess S, Ă…kesson E, Cogdell RJ, Pullerits T and Sundström V (1995) Energy transfer in spectrally inhomogeneous light-harvesting pigment protein complexes of purple bacteria. Biophys J 69: 2211–2225

    PubMed  CAS  Google Scholar 

  • Hofmann C, Francia F, Venturoli G, Oesterhelt D and Köhler J (2003) Energy transfer in a single self-aggregated photosynthetic unit. FEBS Letters 546: 345–348

    PubMed  CAS  Google Scholar 

  • Hu X, Ritz T, Damjanović A and Shulten K (1997) Pigment organization and transfer of electronic excitation in the photosynthetic unit of purple bacteria. J Phys Chem B 101: 3854–3871

    CAS  Google Scholar 

  • Hu X, Ritz T, Damjanovic A, Autenrieth F and Schulten K (2002) Photosynthetic apparatus of purple bacteria. Q Rev Biophys 35: 1–62

    PubMed  CAS  Google Scholar 

  • Ihalainen JA, Linnanto J, Myllyperkiö P, Van Stokkum IHM, Ăścker B, Scheer H and Korppi-Tommola JEI (2001) Energy transfer in LH2 of Rhodospirillum molischianum, studied by subpicosecond spectroscopy and configuration interaction exciton calculations. J Phys Chem B 105: 9849–9856

    CAS  Google Scholar 

  • Jang S, Newton MD and Silbey RJ (2004) Multichromophoric Förster resonance energy transfer. Phys Rev Lett 92: 218301(1–4)

    Google Scholar 

  • Jimenez R, Dikshit SN, Bradforth SE and Fleming GR (1996) Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides. J Phys Chem 100: 6825–6834

    CAS  Google Scholar 

  • Jimenez R, Van Mourik F, Yu J-Y and Fleming GR (1997) Threepulse photon echo measurements on LH1 and LH2 complexes of Rhodobacter sphaeroides: A nonlinear spectroscopic probe of energy transfer. J Phys Chem B 101: 7350–7359

    CAS  Google Scholar 

  • Joo T, Jia Y, Yu J-Y, Jonas DM and Fleming GR (1996) Dynamics in isolated bacterial light harvesting antenna (LH2) of Rhodobacter sphaeroides at room temperature. J Phys Chem 100: 2399–2409

    CAS  Google Scholar 

  • Karrasch S, Bullough PA and Ghosh R (1995) The 8.5 A projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14: 631–638

    PubMed  CAS  Google Scholar 

  • Kennis JTM, Aartsma TJ and Amesz J (1994) Energy trapping in the purple bacteria Chromatium vinosum and Chromatium tepidum. Biochim Biophys Acta 1188: 278–286

    Google Scholar 

  • Kennis JTM, Streltsov AM, Aartsma TJ, Nozava T and Amesz J (1996) Energy transfer and exciton coupling in isolated B800–850 complexes of the photosynthetic purple sulfur bacterium Chromatium tepidum. The effect of structural symmetry on bacteriochlorophyll excited states. J Phys Chem 100: 2438–2442

    CAS  Google Scholar 

  • Kennis JTM, Streltsov AM, Vulto SIE, Aartsma TJ, Nozava T and Amesz J (1997a) Femtosecond dynamics in isolated LH2 complexes of various species of purple bacteria. J Phys Chem B 101: 7827–7834

    CAS  Google Scholar 

  • Kennis JTM, Streltsov AM, Permentier H, Aartsma TJ and Amesz J (1997b) Exciton coherence and energy transfer in the LH2 complex of Rhodopseudomonas acidophila at low temperature. J Phys Chem B 101: 8369–8374

    CAS  Google Scholar 

  • Ketelaars M, Van Oijen AM, Matsushita M, Köhler J, Schmidt J and Aartsma TJ (2001) Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila I. Experiments and Monte Carlo simulations. Biophys J 80: 1591–1603

    PubMed  CAS  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4: 581–597

    PubMed  CAS  Google Scholar 

  • Koolhaas MHC, Van der Zwan G, Van Mourik F and Van Grondelle R (1997a) Spectroscopy and structure of bacteriochlorophyll dimers. I. Structural consequences of non-conservative CD spectra. Biophys J 72: 1828–1841

    PubMed  CAS  Google Scholar 

  • Koolhaas MHC, Van der Zwan G, Frese RN and Van Grondelle R (1997b) Red shift of the zero crossing in the CD spectra of the LH2 antenna complex of Rhodopseudomonas acidophila: A structure-based study. J Phys Chem B 101: 7262–7270

    CAS  Google Scholar 

  • Koolhaas MHC, Frese RN, Fowler GJS, Bibby TS, Georgakopoulou S, Van der Zwan G, Hunter CN and Van Grondelle R (1998) Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. Biochemistry 37: 4693–4698

    CAS  Google Scholar 

  • Koolhaas MHC, Van der Zwan G and Van Grondelle R (2000) Local and nonlocal contributions to the linear spectroscopy of light-harvesting antenna systems. J Phys Chem B 104: 4489–4502

    CAS  Google Scholar 

  • KĂĽhn O and Sundström V (1997a) Energy transfer and relaxation dynamics in light-harvesting antenna complexes of photosynthetic bacteria. J Phys Chem B 101: 3432–3440

    Google Scholar 

  • KĂĽhn O and Sundström V (1997b) Pump-probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach. J Chem Phys 107: 4154–4164

    Google Scholar 

  • KĂĽhn O, Sundström V and Pullerits T (2002) Fluorescence depolarization dynamics in the B850 complex of purple bacteria. Chem Phys 275: 15–30

    Google Scholar 

  • Kumble R, Palese S, Visschers RW, Dutton PL and Hochstrasser RM (1996) Ultrafast dynamics within the B820 subunit from the core (LH-1) antenna complex of Rs. rubrum. Chem Phys Lett 261: 396–404

    CAS  Google Scholar 

  • Leupold D, Stiel H, Teuchner K, Novak F, Sandner W, Ucker B and Scheer H (1996) Size enhancement of transition dipoles to oneand two-exciton bands in a photosynthetic antenna. Phys Rev Lett 77: 4675–4678

    PubMed  CAS  Google Scholar 

  • Ma YZ, Cogdell RJ and Gillbro T (1997) Energy transfer and exciton annihilation in the B800–850 antenna complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila (strain 10050). A femtosecond transient absorption study. J Phys Chem B 101: 1087–1095

    CAS  Google Scholar 

  • Ma YZ, Cogdell RJ and Gillbro T (1998) Femtosecond energytransfer dynamics between bacteriochlorophylls in the B800-820 antenna complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila (Strain 7750). J Phys Chem B 102: 881–887

    CAS  Google Scholar 

  • Martin J-L, Breton J, Hoff A, Migus A and Antonetti A (1986) Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26: Direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8 ± 0.2 psec. Proc Natl Acad Sci USA 83: 957–961

    PubMed  CAS  Google Scholar 

  • Matsushita M, Ketelaars M, Van Oijen AM, Köhler J, Aartsma TJ and Schmidt J (2001) Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila II. Exciton states of an elliptically deformed ring aggregate. Biophys J 80: 1604–1614

    PubMed  CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    CAS  Google Scholar 

  • Meier T, Zhao Y, Chernyak V and Mukamel S (1997a) Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes. J Chem Phys 107: 3876–3893

    CAS  Google Scholar 

  • Meier T, Chernyak V and Mukamel S (1997b) Femtosecond photon echoes in molecular aggregates. J Chem Phys 107: 8759–8774

    CAS  Google Scholar 

  • Meier T, Chernyak V and Mukamel S (1997c) Multiple exciton coherence sizes in photosynthetic antenna complexes viewedby pump-probe spectroscopy. J Phys Chem B 101: 7332–7342

    CAS  Google Scholar 

  • Monshouwer R, De Zarate IO, Van Mourik F and Van Grondelle R (1995) Low-intensity pump-probe spectroscopy on the B800 to B850 transfer in the light harvesting 2 complex of Rhodobacter sphaeroides. Chem Phys Lett 246: 341–346

    CAS  Google Scholar 

  • Monshouwer R, Abrahamsson M, Van Mourik F and Van Grondelle R (1997) Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J Phys Chem B 101: 7241–7248

    CAS  Google Scholar 

  • Monshouwer R, Baltuska A, Van Mourik F and Van Grondelle R (1998) Time-resolved absorption difference spectroscopy of the LH1 antenna of Rhodopseudomonas viridis. J Phys Chem A 102: 4360–4371

    CAS  Google Scholar 

  • Mostovoy MV and Knoester J (2000) Statistics of optical spectra from single-ring aggregates and its application to LH2. J Phys Chem B 104: 12355–12364

    CAS  Google Scholar 

  • Mukamel S (1995) Principles of Nonlinear Optical Spectroscopy. Oxford University Press, Oxford

    Google Scholar 

  • Mukai K, Abe S and Sumi H (1999) Theory of rapid excitationenergy transfer from B800 to optically-forbidden exciton states of B850 in the antenna system LH2 of photosynthetic purple bacteria. J Phys Chem B 103: 6069–6102

    Google Scholar 

  • Nagarajan V, Alden RG, Williams JC and Parson WW (1996) Ultrafast exciton relaxation in the B850 antenna complex of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 93: 13774–13779

    PubMed  CAS  Google Scholar 

  • Nagarajan V, Johnson ET, Williams JC and Parson WW (1999) Femtosecond pump-probe spectroscopy of the B850 antenna complex of Rhodobacter sphaeroides at room temperature. J Phys Chem B 103: 2297–2309

    CAS  Google Scholar 

  • Novoderezhkin VI and Razjivin AP (1993) Excitonic interactions in the light-harvesting antenna of photosynthetic purple bacteria and their influence on picosecond absorbance difference spectra. FEBS Lett 330: 5–7

    PubMed  CAS  Google Scholar 

  • Novoderezhkin VI and Razjivin AP (1994) Exciton states of the antenna and energy trapping by the reaction center. Photosyn-thesis Research 42: 9–15

    CAS  Google Scholar 

  • Novoderezhkin VI and Razjivin AP (1995a) Exciton dynamics in circular aggregates: Application to antenna of photosynthetic purple bacteria. Biophys J 68: 1089–1100

    PubMed  CAS  Google Scholar 

  • Novoderezhkin VI and Razjivin AP (1995b) Excitation delocalization over the whole core antenna of photosynthetic purple bacteria evidenced by non-linear pump-probe spectroscopy. FEBS Lett 368: 370–372

    PubMed  CAS  Google Scholar 

  • Novoderezhkin VI and Razjivin AP (1996) The theory of Förstertype migration between clusters of strongly interacting molecules: application to light-harvesting complexes of purple bacteria. Chem Phys 211: 203–214

    CAS  Google Scholar 

  • Novoderezhkin V and Van Grondelle R (2002) Exciton-vibrational relaxation and transient absorption dynamics in LH1 of Rhodopseudomonas viridis: A Redfield theory approach. J Phys Chem B 106: 6025–6037

    CAS  Google Scholar 

  • Novoderezhkin V, Monshouwer R and Van Grondelle R (1999a) Disordered exciton model for the core light-harvesting antenna of Rhodopseudomonas viridis. Biophys J 77: 666–681

    PubMed  CAS  Google Scholar 

  • Novoderezhkin V, Monshouwer R and Van Grondelle R (1999b) Exciton (de)localization in the LH2 antenna of Rhodobacter sphaeroides as revealed by relative difference absorption measurements of the LH2 antenna and the B820 subunit. J Phys Chem B 103: 10540–10548

    CAS  Google Scholar 

  • Novoderezhkin V, Monshouwer R and Van Grondelle R (2000) Electronic and vibrational coherence in the core light-harvesting antenna of Rhodopseudomonas viridis. J Phys Chem B 104: 12056–12071

    CAS  Google Scholar 

  • Novoderezhkin V, Wendling M and Van Grondelle R (2003) Intra- and interband transfers in the B800–B850 antenna of Rhodospirillum molischianum: Redfield theory modeling of polarized pump-probe kinetics. J Phys Chem B 107: 11534–11548

    CAS  Google Scholar 

  • Novoderezhkin VI, Rutkauskas D and Van Grondelle R (2006) Dynamics of the emission spectrum of a single LH2 complex: Interplay of slow and fast nuclear motions. Biophys J 90: 2890–2902

    PubMed  CAS  Google Scholar 

  • Novoderezhkin VI, Rutkauskas D and Van Grondelle R (2007) Multistate conformational model of a single LH2 complex: Quantitative picture of time-dependent spectral fluctuations. Chem Phys 341: 45–56

    CAS  Google Scholar 

  • Nuijs AM, Van Grondelle R, Joppe HLP, Van Bochove AC and Duysens LNM (1985) Singlet and triplet excited carotenoid and antenna bacteriochlorophyll of the photosynthetic purple bacterium Rhodospirillum rubrum as studied by picosecond absorbance difference spectroscopy. Biochim Biophys Acta 810: 94–105

    CAS  Google Scholar 

  • Otte SCM, Kleinherenbrink FAM and Amesz J (1993) Energy transfer between the reaction center and the antenna in purple bacteria Biochim Biophys Acta 1143: 84–90

    CAS  Google Scholar 

  • Papiz MZ, Prince SM, Howard T, Cogdell RJ and Isaacs NW (2003) The structure and thermal motion of the B800–850 LH2 complex from Rps. acidophila at 2.0 Ă… resolution and 100 K: New structural features and functionally relevant motions. J Mol Biol 326: 1523–1538

    PubMed  CAS  Google Scholar 

  • Peterman EJG, Pullerits T, Van Grondelle R and Van Amerongen H (1997) Electron-phonon coupling and vibronic fine structure of light-harvesting complex II of green plants: Temperature dependent absorption and high-resolution fluorescence spectroscopy. J Phys Chem B 101: 4448–4457

    CAS  Google Scholar 

  • PolĂ­vka T, Pullerits T, Herek JL and Sundström V (2000) Exciton relaxation and polaron formation in LH2 at low temperature. J Phys Chem B 104: 1088–1096

    Google Scholar 

  • Pullerits T, Chachisvilis M and Sundström V (1996) Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J Phys Chem 100: 10787–10792

    CAS  Google Scholar 

  • Razjivin AP, Danielius RV, Gadonas RA, Borisov AYu and Piskarskas AS (1982) The study of excitation transfer between light-harvesting antenna andreaction center in chromatophores from purple bacterium Rhodospirillum rubrum by selective picosecond spectroscopy. FEBS Lett 143: 40–44.

    CAS  Google Scholar 

  • Reddy NRS, Small GJ, Seibert M and Picorel R (1991) Energytransfer dynamics of the B800–B850 antenna complex of Rhodobacter sphaeroides — a hole burning study. Chem Phys Lett 181: 391–399

    CAS  Google Scholar 

  • Reddy NRS, Picorel R and Small GJ (1992) B896 and B870 components of the Rhodobacter sphaeroides antenna — a hole burning study. J Phys Chem 96: 6458–6464

    CAS  Google Scholar 

  • Reddy NRS, Cogdell RJ, Zhao L and Small GJ (1993) Nonphotochemical hole burning of the B800–B850 antenna complex of Rhodopseudomonas acidophila. Photochem Photobiol 57: 35–39

    CAS  Google Scholar 

  • Redfield AG (1965) The theory of relaxation processes. Adv Mag Res 1: 1–32

    Google Scholar 

  • Renger Th, May V and KĂĽhn O (2001) Ultrafast excitation energy transfer dynamics in photosynthetic pigment-protein complexes. Phys Rep 343: 137–254

    CAS  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law KJ, Isaacs NW and Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302: 1969–1972

    PubMed  CAS  Google Scholar 

  • Rutkauskas D, Novoderezhkin V, Cogdell RJ and Van Grondelle R (2004) Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050. Biochemistry 43: 4431–4438

    PubMed  CAS  Google Scholar 

  • Rutkauskas D, Novoderezhkin V, Cogdell RJ and Van Grondelle R (2005) Fluorescence spectroscopy of conformational changes of single LH2 complexes. Biophys J 88: 422–435

    PubMed  CAS  Google Scholar 

  • Rutkauskas D, Novoderezhkin V, Gall A, Olsen J, Cogdell RJ, Hunter CN, Van Grondelle R (2006) Spectral trends in the fluorescence of single bacterial light-harvesting complexes: experiments and modified Redfield simulations. Biophys J 90: 2475–2485

    PubMed  CAS  Google Scholar 

  • Salverda JM, Van Mourik F, Van der Zwan G, and Van Grondelle R (2000) Energy transfer in the B800 rings of the peripheral bacterial light-harvesting complexes of Rhodopseudomonas acidophila and Rhodospirillum molischianum studied with photon echo techniques. J Phys Chem B 104: 11395–11408

    CAS  Google Scholar 

  • Sauer K, Cogdell RJ, Prince SM, Freer A, Isaacs NW and Scheer H (1996) Structure-based calculations of the optical spectra of the LH2 bacteriochlorophyll-protein complex from Rhodopseudomonas acidophila. Photochem Photobiol 64: 564–576

    CAS  Google Scholar 

  • Savikhin S and Struve WS (1996) Temperature dependence of electronic energy transfer within B850 antennae of the NF57 mutant of purple bacterium Rhodobacter sphaeroides. Chem Phys 210: 91–100

    CAS  Google Scholar 

  • Sebban P, Jolchine G and Moya I (1984) Spectra of fluorescence lifetime and intensity of Rhodopseudomonas sphaeroides at room and low temperature. Comparison between the wild type, the C71 reaction center-less mutant and the B800–850 pigmentprotein complex. Photochem Photobiol 39: 247–253

    Google Scholar 

  • Scherz A and Parson WW (1984) Exciton interactions in dimers of bacteriochlorophyll and related molecules. Biochim Biophys Acta 766: 666–678

    CAS  Google Scholar 

  • Scheuring S, Seguin J, Marco S, Levy D, Robert B and Rigaud JL (2003) Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. Proc Natl Acad Sci USA 100: 1690–1693

    PubMed  CAS  Google Scholar 

  • Scholes GD and Fleming GR (2000) On the mechanism of light harvesting in purple bacteria: B800 to B850 energy transfer. J Phys Chem B 104: 1854–1868

    CAS  Google Scholar 

  • Scholes GD, Gould IR, Cogdell RJ and Fleming GR (1999) Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rps. acidophila. J Phys Chem B 103: 2543–2553

    CAS  Google Scholar 

  • Somsen OJG, Van Mourik F, Van Grondelle R and Valkunas L (1994) Energy migration and trapping in a spectrally and spatially inhomogeneous light-harvesting antenna. Biophys J 66: 1580–1596

    PubMed  CAS  Google Scholar 

  • Somsen OJG, Van Grondelle R and Valkunas L (1996) A perturbed two-level model for exciton trapping in small photosynthetic systems. Biophys J 70: 669–683

    PubMed  CAS  Google Scholar 

  • Sumi H (1999) Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J Phys Chem B 103: 252–260

    CAS  Google Scholar 

  • Sundström V, Van Grondelle R, Bergstrem H, Akesson E and Gilbro T (1986) Excitation energy transport in the BCh1 antenna systems of Rhodospirillum rubrum and Rhodobacter sphaeroides studied by low-intensity picosecond spectroscopy. Biochim Biophys Acta 851: 431–446

    Google Scholar 

  • Sundström V, Pullerits T and Van Grondelle R (1999) Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103: 2327–2346

    Google Scholar 

  • Tietz C, Chekhlov O, Dräbenstedt A, Schuster J and Wrachtrup J (1999) Spectroscopy on single light-harvesting complexes at low temperature. J Phys Chem B 103: 6328–6333

    CAS  Google Scholar 

  • Timpmann KN, Zhang FG, Freiberg AM and Sundström V (1993) Detrapping of excitation energy from the reaction centre in the photosynthetic bacterium Rhodospirillum rubrum. Biochim Biophys Acta 1183: 185–193

    CAS  Google Scholar 

  • Timpmann K, Rätsep M, Hunter CN and Freiberg A (2004) Emitting excitonic polaron states in core LH1 and peripheral LH2 bacterial light-harvesting complexes. J Phys Chem B 108: 10581–10588

    CAS  Google Scholar 

  • Tretiak S, Middleton C, Chernyak V and Mukamel S (2000a) Rxciton Hamiltonian for the bacteriochlorophyll system in the LH2 antenna complex of purple bacteria. J Phys Chem B 104: 4519–4528

    CAS  Google Scholar 

  • Tretiak S, Middleton C, Chernyak V and Mukamel S (2000b) Bacteriochlorophyll and carotenoid excitonic couplings in the LH2 system of purple bacteria. J Phys Chem B 104: 9540–9553

    CAS  Google Scholar 

  • Valkunas L, Janušonis J, Rutkauskas D and Van Grondelle R (2007) Protein dynamics revealed in the excitonic spectra of single LH2 complexes. J Lumines 127: 269–275

    CAS  Google Scholar 

  • Van Amerongen H, Valkunas L and Van Grondelle R (2000) Photosynthetic Excitons. World Scientific Publishers, Singapore

    Google Scholar 

  • Van der Laan H, Schmidt Th, Visschers RW, Visscher KJ, Van Grondelle R and Völker S (1990) Energy transfer in the B800–850 antenna complex of purple bacteria Rhodobacter sphaeroides: A study by spectral hole-burning. Chem Phys Lett 170: 231–238

    Google Scholar 

  • Van Grondelle R and Novoderezhkin V (2001) Dynamics of excitation energy transfer in the LH1 and LH2 light-harvesting complexes of photosynthetic bacteria. Biochemistry 40: 15057–15068

    PubMed  Google Scholar 

  • Van Grondelle R and Novoderezhkin V (2006) Energy transfer in photosynthesis: Experimental insights and quantitative models. Phys Chem Chem Phys 8: 793–807

    PubMed  Google Scholar 

  • Van Grondelle R, Dekker JP, Gillbro T and Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim BiophysActa 1187: 1–65

    CAS  Google Scholar 

  • Van Mourik F, Visschers RW and Van Grondelle R (1992) Energy transfer and aggregate size effects in the inhomogeneously broadened core light-harvesting complex of Rhodobacter sphaeroides. Chem Phys Lett 193: 1–7

    Google Scholar 

  • Van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1998) Spectroscopy of single light-harvesting complexes from purple photosynthetic bacteria at 1.2 K. J Phys Chem B 102: 9363–9366

    Google Scholar 

  • Van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1999a) Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science 285: 400–402

    PubMed  Google Scholar 

  • Van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1999b) Spectroscopy of individual LH2 complexes of Rhodopseudomonas acidophila: Localized excitations in the B800 band. Chem Phys 247: 53–60

    Google Scholar 

  • Visscher KJ, Bergström H, Sundström V, Hunter CN and Van Grondelle R (1989) Temperature dependence of energy transfer from the long wavelength antenna BChl-896 to the reaction center in Rhodospirillum rubrum, Rhodobacter sphaeroides (w.t. and M21 mutant) from 77 to 177 K, studied by picosecond absorption spectroscopy. Photosynth Res 22: 211–217

    CAS  Google Scholar 

  • Visschers RW, Germeroth L, Michel H, Monshouwer R and Van Grondelle R (1995) Spectroscopic properties of the lightharvesting complexes from Rhodospirillum molischianum. Biochim Biophys Acta 1230: 147–154

    PubMed  Google Scholar 

  • Visser HM, Somsen OJG, Van Mourik F, Lin S, Van Stokkum IHM and Van Grondelle R (1995) Direct observation of sub-picosecond equilibration of excitation energy in the light-harvesting antenna of Rhodospirillum rubrum. Biophys J 69: 1083–1099

    PubMed  CAS  Google Scholar 

  • Visser HM, Somsen OJG, Van Mourik F, Lin S, Van Stokkum IHM and Van Grondelle R (1996) Excited-state energy equilibration via subpico second energy transfer within the inhomogeneously broadened light-harvesting antenna of LH-1 -only Rhodobacter sphaeroides mutants M2192 at room temperature and 4.2 K. J Phys Chem 100: 18859–18867

    CAS  Google Scholar 

  • Vulto SIE, Kennis JTM, Streltsov AM, Amesz J and Aartsma TJ (1999) Energy relaxation within the B850 absorption band of the isolated light-harvesting complex LH2 from Rhodopseudomonas acidophila at low temperature. J Phys Chem B 103: 878–883

    CAS  Google Scholar 

  • Wendling M, Van Mourik F, Van Stokkum IHM, Salverda JM, Michel H and Van Grondelle R (2003) Low-intensity pumpprobe measurements on the B800 band of Rhodospirillum molischianum. Biophys J 84: 440–449

    PubMed  CAS  Google Scholar 

  • Wu H-M, Savikhin S, Reddy NRS, Jankowiak R, Cogdell RJ and Small GJ (1996) Femtosecond and hole-burning studies of B800’s excitation energy relaxation dynamics in the LH2 antenna complex of Rhodopseudomonas acidophila (strain 10050). J Phys Chem 100: 12022–12033

    CAS  Google Scholar 

  • Wu H-M, Reddy NRS and Small GJ (1997a) Direct observation and hole burning of the lowest exciton level (B870) of the LH2 antenna complex of Rhodopseudomonas acidophila (Strain 10050). J Phys Chem B 101: 651–656

    CAS  Google Scholar 

  • Wu H-M, Ratsep M, Lee I-J, Cogdell RJ and Small GJ (1997b) Exciton level structure and energy disorder of the B850 ring of the LH2 antenna complex. J Phys Chem B 101: 7654–7663

    CAS  Google Scholar 

  • Xiao W, Lin S, Taguchi AKW and Woodbury NW (1994) Femtosecond pump-probe analysis of energy and electron transfer in photosynthetic membranes of Rhodobacter capsulatus. Biochemistry 33: 8313–8322

    PubMed  CAS  Google Scholar 

  • Yang M and Fleming GR (2002) Influence of phonons on exciton transfer dynamics: Comparison of the Redfield, Förster, and modified Redfield equations. Chem Phys 275: 355–372

    CAS  Google Scholar 

  • Zhang WM, Meier T, Chernyak V and Mukamel S (1998) Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J Chem Phys 108: 7763–7774

    CAS  Google Scholar 

  • Zigmantas D, Read EL, ManÄŤal T, Brixner T, Gardiner AT, Cogdell RJ and Fleming GR (2006) Two-dimensional electronic spectroscopy of the B800–820 light-harvesting complex. Proc Natl Acad Sci USA 103: 12672–12677

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rienk van Grondelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

van Grondelle, R., Novoderezhkin, V.I. (2009). Spectroscopy and Dynamics of Excitation Transfer and Trapping in Purple Bacteria. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_13

Download citation

Publish with us

Policies and ethics