Spectroscopic Properties of Antenna Complexes from Purple Bacteria

  • Bruno Robert
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 28)


This chapter describes the known factors which shape the electronic (and thus the functional) properties of light-harvesting (LH) complexes of purple bacteria. Although a variety of high- and low-resolution structures from LH complexes are now available, they do not provide, per se, a detailed picture of the electronic properties of the pigments in these complexes. However they constitute a framework which has helped, through the use of wide range of techniques, most often combining site-selection mutagenesis and advanced spectroscopies, to make progress in determining which parameters are important for the function of these proteins. Today, antenna proteins from purple photosynthetic bacteria are probably the best-understood photosynthetic LH proteins, and among the best-characterized membrane proteins in any biological field. However, there are still some discrepancies about the precise relationship between their structure and function. This chapter attempts to describe, as simply as possible, the physical mechanisms which are thought to underlie the tuning of the absorption properties of bacteriochlorophyll molecules in these proteins, as well as the results which are at the origin of the running arguments.


Purple Bacterium Rhodobacter Sphaeroides Antenna Complex Resonance Raman Spectrum Purple Photosynthetic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





circular dichroism








reaction center






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alden RG, Johnson E, Nagarajan V, Parson WW, Law CJ, and Cogdell RJC (1997) Calculations of spectroscopic properties of the LH2 bacteriochlorophyll-protein antenna complex from Rhodopseudomonas acidophila. J Phys Chem B 101: 4667–4680CrossRefGoogle Scholar
  2. Bahatyrova S, Frese RN, van der Werf KO, Otto C, Hunter CN and Olsen JD (2004a) Flexibility and size heterogeneity of the LH1 light harvesting complex revealed by atomic force microscopy Functional significance for bacterial photosynthesis. J Biol Chem 279: 21327–21333PubMedCrossRefGoogle Scholar
  3. Bahatyrova S, Frese RN, Siebert, CA, van der Werf KO, van Grondelle R, Niederman RA, Bullough PA, Otto C, Olsen JD and Hunter CN (2004b) The native architecture of a photosynthetic membrane. Nature 430: 1058–1062PubMedCrossRefGoogle Scholar
  4. Beekman LMP, Frese RN, Fowler GJS, Ortiz de Zarate I, Cogdell RJ, van Stokkum I, Hunter CN and van Grondelle R (1997a) Characterization of the light-harvesting antennas of photosynthetic purple bacteria by Stark spectroscopy. 2. LH2 complexes: Influence of the protein environment. J Phys Chem B 101: 7293–7301CrossRefGoogle Scholar
  5. Beekman LMP, Steffen M, van Stokkum I, Olsen JD, Hunter CN, Boxer SG and van Grondelle R (1997b) Characterization of the light-harvesting antennas of photosynthetic purple bacteria by Stark spectroscopy. 1. LH1 antenna complex and the B820 subunit from Rhodospirillum rubrum. J Phys Chem B 101: 7284–7292CrossRefGoogle Scholar
  6. Bopp MA, Sytnik A, Howard TD, Cogdell RJ and Hochstrasser RM (1999) The dynamics of structural deformations of immobilized single light-harvesting complexes. Proc Natl Acad Sci USA 96: 11271–11276PubMedCrossRefGoogle Scholar
  7. Brunisholz RA, Bissig I, Niederer E, Suter F and Zuber H (1987) Structural studies on the light-harvesting polypeptides of Rp. acidophila. In: Biggins J (ed) Progress in Photosynthesis Research, Proceedings 7th International Congress of Photosynthesis, pp 13–16. Nijhoff, DordrechtGoogle Scholar
  8. Clayton RK (1963) Towards the isolation of a photochemical reaction center in Rhodopseudomonas spheroides. Biochim Biophys Acta 75: 312–323PubMedCrossRefGoogle Scholar
  9. Chachisvilis M, Kuehn O, Pullerits T and Sundström V (1997) Excitons in photosynthetic purple bacteria: Wavelike motion or incoherent hopping? J Phys Chem B 101: 7275–7283CrossRefGoogle Scholar
  10. Cogdell RJ and Scheer H (1985) Circular dichroism of lightharvesting complexes from purple photosynthetic bacteria. Photochem Photobiol 42: 669–678CrossRefGoogle Scholar
  11. Cogdell RJ, Hawthornthwaite AM, Evans MB, Ferguson LA, Kerfeld C, Thornber JP, Van Mourik F and van Grondelle R (1990) Isolation and characterization of an unusual antenna complex from the marine purple sulfur photosynthetic bacterium Chromatium purpuratum BN5500. Biochim Biophys Acta 1019: 239–244CrossRefGoogle Scholar
  12. Fathir I, Ashikaga M, Tanaka K, Katano T, Nirasawa T, Kobayashi M, Wang Z-Y and Nozawa T (1998) Biochemical and spectral characterization of the core light harvesting complex 1 (LH1) from the thermophilic purple sulfur bacterium Chromatium tepidum. Photosynth Res 58: 193–202CrossRefGoogle Scholar
  13. Fowler GJS, Visschers RW, Grief GG, van Grondelle R and Hunter CN (1992) Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355: 848–850PubMedCrossRefGoogle Scholar
  14. Fowler GJS, Sockalingum GD, Robert B and Hunter CN (1994) Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at α-Tyr-44 and α-Tyr-45. Biochem J 299: 695–700PubMedGoogle Scholar
  15. Fowler GJS, Hess S, Pullerits T, Sundström V and Hunter CN (1997) Role of β Arg-10 in the B800 bacteriochlorophyll and carotenoid pigment environment within the light-harvesting LH2 complex of Rhodobacter sphaeroides. Biochemistry 36: 11282–11291PubMedCrossRefGoogle Scholar
  16. Francia F, Wang J, Venturoli G, Melandri BA, Barz WP and Oesterhelt D (1999) The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Biochemistry 38: 6834–6845PubMedCrossRefGoogle Scholar
  17. French CS (1940) The pigment protein compound of photosynthetic bacteria. J Gen Physiol 23: 483–494CrossRefPubMedGoogle Scholar
  18. Frese RN, Olsen JD, Branvall R, Westerhuis WHJ, Hunter CN and van Grondelle R (2000) The long-range supraorganization of the bacterial photosynthetic unit: A key role for PufX. Proc Natl Acad Sci USA 97: 5197–5202PubMedCrossRefGoogle Scholar
  19. Gall A and Robert B (1999) Characterization of the different peripheral light-harvesting complexes from high- and low-light grown cells from Rhodopseudomonas palustris. Biochemistry 38: 5185–5190PubMedCrossRefGoogle Scholar
  20. Gall A, Fowler GJS, Hunter CN and Robert B (1997) Influence of the protein binding site on the absorption properties of the monomeric bacteriochlorophyll in Rhodobacter sphaeroides LH2 complex. Biochemistry 36: 16282–16287PubMedCrossRefGoogle Scholar
  21. Gall A, Yurkov V, Verméglio A and Robert B (1999) Certain species of the Proteobacteria possess unusual bacteriochlorophyll a environments in their light-harvesting proteins. Biospectroscopy 5: 338–345PubMedCrossRefGoogle Scholar
  22. Gall A, Ellervee A, Sturgis JN, Fraser NJ, Cogdell RJ, Freiberg A and Robert B. (2003) Membrane protein stability: High pressure effects on the structure and chromophore-binding properties of the light-harvesting complex LH2. Biochemistry 42: 13019–13026PubMedCrossRefGoogle Scholar
  23. Garcia D, Parot P, Verméglio A and Madigan MT (1986) The light-harvesting complexes of a thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum. Biochim Biophys Acta 850: 390–395CrossRefGoogle Scholar
  24. Georgakopoulou S, Frese RN, Johnson E, Koolhaas MHC, Cogdell RJ, van Grondelle R and van der Zwan G (2002) Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria. Biophys J 82: 2184–2197PubMedCrossRefGoogle Scholar
  25. Georgakopoulou S, van der Zwan G, Olsen JD, Hunter CN, Niederman RA and van Grondelle R (2006) Investigation of the effects of different carotenoids on the absorption and CD signals of light harvesting 1 complexes. J Phys Chem B. 110: 3354–3361PubMedCrossRefGoogle Scholar
  26. Germeroth L, Lottspeich F, Robert B and Michel H (1993) Unexpected similarities of the B800–850 light-harvesting complex from Rhodospirillum molischianum to the B870 light-harvesting complexes from other purple photosynthetic bacteria. Biochemistry 32: 5615–21PubMedCrossRefGoogle Scholar
  27. Gottfried DS, Stocker JW and Boxer SG (1991) Stark effect spectroscopy of bacteriochlorophyll in light-harvesting complexes from photosynthetic bacteria. Biochim Biophys Acta 1059: 63–75CrossRefGoogle Scholar
  28. Gudowska-Nowak E, Newton MD and Fajer J (1990) Conformation and environmental effects on bacteriochlorophyll optical spectra: Correlations of calculated spectra with structural studies. J Phys Chem 94: 5795–5801CrossRefGoogle Scholar
  29. Hartigan N, Tharia HA, Sweeney F, Lawless AM and Papiz MZ (2002) The 7.5-Å electron density and spectroscopic properties of a novel low-light B800 LH2 from Rhodopseudomonas palustris. Biophys J. 82: 963–977PubMedCrossRefGoogle Scholar
  30. Hu Q, Sturgis JN, Robert B, Delagrave S, Youvan DC and Niederman RA (1998) Hydrogen bonding and circular dichroism of bacteriochlorophylls in the Rhodobacter capsulatus light-harvesting II complex altered by combinatorial mutagenesis. Biochemistry 37: 10006–10015PubMedCrossRefGoogle Scholar
  31. Isaacs NW, Cogdell RJ, Freer AA and Prince SM (1995) Light-harvesting mechanisms in purple photosynthetic bacteria. Curr Opin Struct Biol 5: 794–797PubMedCrossRefGoogle Scholar
  32. Jamieson SJ, Wang P, Qian P, Kirkland JY, Conroy MJ, Hunter CN and Bullough PA. (2002) Projection structure of the photosynthetic reaction centre-antenna complex of Rhodospirillum rubrum at 8.5 Å resolution. EMBO J 21: 3927–3935PubMedCrossRefGoogle Scholar
  33. Jimenez R and Fleming GR (1996) Ultrafast spectroscopy of photosynthetic systems. Adv Photosynth 3: 63–73CrossRefGoogle Scholar
  34. Jimenez R, van Mourik F, Yu JY and Fleming GR (1997) Threepulse photon echo measurements on LH1 and LH2 complexes of Rhodobacter sphaeroides: A nonlinear spectroscopic probe of energy transfer. J Phys Chem B 101: 7350–7359CrossRefGoogle Scholar
  35. Jungas C, Ranck J-L, Rigaud J-L, Joliot P and Verméglio A (1999) Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J 18: 534–542PubMedCrossRefGoogle Scholar
  36. Karrasch S, Bullough PA and Ghosh R (1995) The 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14: 631–368PubMedGoogle Scholar
  37. Kennis JTM, Streltsov AM, Permentier H, Aartsma TJ and Amesz J (1997a) Exciton coherence and energy transfer in the LH2 antenna complex of Rhodopseudomonas acidophila at low temperature. J Phys Chem B 101: 8369–8374CrossRefGoogle Scholar
  38. Kennis JTM, Streltsov AM, Vulto SIE, Aartsma TJ, Nozawa T and Amesz J (1997b) Femtosecond dynamics in isolated LH2 complexes of various species of purple bacteria. J Phys Chem B 101: 7827–7834CrossRefGoogle Scholar
  39. Ketelaars M, Van Oijen AM, Matsushita M, Köhler J, Schmidt J and Aartsma TJ (2001) Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila I. experiments and Monte Carlo simulations. Biophys J 80: 1591–1603PubMedCrossRefGoogle Scholar
  40. Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4: 581–597PubMedCrossRefGoogle Scholar
  41. Koolhaas MHC, van der Zwan G, Frese RN and van Grondelle R (1997) Red shift of the zero crossing in the CD spectra of the LH2 antenna complex of Rhodopseudomonas acidophila: A structure-based study. J Phys Chem B 101: 7262–7270CrossRefGoogle Scholar
  42. Koolhaas MHC, Frese RN, Fowler GJS, Bibby TA, Georgakopoulou S, van der Zwan G, Hunter CN, and van Grondelle R (1998) Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. Biochemistry 37: 4693–4698CrossRefGoogle Scholar
  43. Koolhaas MHC, van der Zwan G and van Grondelle R (2000) Local and nonlocal contributions to the linear spectroscopy of light-harvesting antenna systems. J Phys Chem B 104: 4489–4502CrossRefGoogle Scholar
  44. Kramer HJM, van Grondelle R, Hunter CN, Westerhuis WHJ and Amesz J (1984) Pigment organization of the B800–850 antenna complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 765: 156–165CrossRefGoogle Scholar
  45. Kuhn O and Sundström V (1997) Pump-probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach. J Chem Phys 107: 4154–4164CrossRefGoogle Scholar
  46. Kwa LG, Garcia-Martin A, Vegh AP, Strohmann B, Robert B and Braun P. (2004) Hydrogen bonding in a model bacteriochlorophyll-binding site drives assembly of light harvesting complex. J Biol Chem. 279: 15067–15075PubMedCrossRefGoogle Scholar
  47. Krikunova M, Kummrow A, Voigt B, Rini M, Lokstein H, Moskalenko, AA, Scheer H, Razjivin A and Leupold D (2002) Fluorescence of native and carotenoid-depleted LH2 from Chromatium minutissimum originating from simultaneous two-photon absorption in the spectral range of the presumed (optically ‘dark’) S1 state of carotenoids. FEBS Lett 530: 227–229CrossRefGoogle Scholar
  48. Lapouge K, Näveke A, Gall A, Seguin J, Scheer H, Sturgis J and Robert B (1999) Conformation of bacteriochlorophyll molecules in photosynthetic proteins from purple bacteria. Biochemistry 38: 11115–11121PubMedCrossRefGoogle Scholar
  49. Lapouge K, Näveke A, Robert B, Scheer H and Sturgis JN (2000) Exchanging cofactors in the core antennae from purple bacteria: structure and properties of Zn-bacteriopheophytin-containing LH1. Biochemistry 39: 1091–1099PubMedCrossRefGoogle Scholar
  50. Matsushita M, Ketelaars M, Van Oijen AM, Köhler J, Aartsma TJ and Schmidt J (2001) Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila II. Exciton states of an elliptically deformed ring aggregate. Biophys J 80: 1604–1614PubMedCrossRefGoogle Scholar
  51. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521CrossRefGoogle Scholar
  52. McLuskey K, Prince SM, Cogdell RJ and Isaacs NW (1999) Crystallization and preliminary X-ray crystallographic analysis of the B800–820 light-harvesting complex from Rhodopseudomonas acidophila strain 7050. Acta Cryst D55: 885–887Google Scholar
  53. Molisch H (1907) Die Purpurbakterien nach neuen Untersuchungen. Gustav Fisher, JenaGoogle Scholar
  54. Monshouwer R and van Grondelle R (1996) Excitations and excitons in bacterial light-harvesting complexes. Biochim Biophys Acta 1275: 70–75CrossRefGoogle Scholar
  55. Monshouwer R, Abrahamsson M, van Mourik F and van Grondelle R (1997) Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J Phys Chem B 101: 7241–7248CrossRefGoogle Scholar
  56. Nagarajan V, Johnson ET, Williams JC and Parson WW (1999) Femtosecond pump-probe spectroscopy of the B850 antenna complex of Rhodobacter sphaeroides at room temperature. J Phys Chem B 103: 2297–2309CrossRefGoogle Scholar
  57. Novoderezhkin VI, Rutkauskas D and van Grondelle R (2006) Dynamics of the emission spectrum of a single LH2 complex: Interplay of slow and fast nuclear motions. Biophys J 90: 2890–2902PubMedCrossRefGoogle Scholar
  58. Olsen JD, Sockalingum GD, Robert B and Hunter CN (1994) Modification of a hydrogen bond to a bacteriochlorophyll a molecule in the light-harvesting 1 antenna of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91: 7124–7128PubMedCrossRefGoogle Scholar
  59. Olsen JD, Sturgis JN, Westerhuis WHJ, Fowler GJS, Hunter CN and Robert B (1997) Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides. Biochemistry 36: 12625–12632PubMedCrossRefGoogle Scholar
  60. Pardee AB, Schachman HK and Stanier RY (1952) Chromatophores of Rhodospirillum rubrum. Nature 169: 282–283PubMedCrossRefGoogle Scholar
  61. Prince SM, Papiz MZ., Freer AA, McDermott G, Hawthornthwaite-Lawless AM, Cogdell RJ, and Isaacs NW (1997) Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: Modular assembly and protein pigment interactions. J Mol Biol 268: 412–423PubMedCrossRefGoogle Scholar
  62. Pullerits T, Chachisvilis M and Sundström V (1996) Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J Phys Chem 100: 10787–10792CrossRefGoogle Scholar
  63. Qian P, Hunter CN and Bullough PA (2005) The 8.5Å projection structure of the core RC-LH1-PufX dimer of Rhodobacter sphaeroides. J Mol Biol 349: 948–960PubMedCrossRefGoogle Scholar
  64. Richter MF, Baier J, Prem T, Oellerich S, Francia F, Venturoli G, Oesterhelt D, Southall J, Cogdell RJ and Köhler J (2007) Symmetry matters for the electronic structure of core complexes from Rhodopseudomonas palustris and Rhodobacter sphaeroides PufX-. Proc Natl Acad Sci USA. 104: 6661–6665PubMedCrossRefGoogle Scholar
  65. Ridge JP, Fyfe PK, McAuley KE, van Brederode ME, Robert B, van Grondelle R, Isaacs NW, Cogdell RJ and Jones MR (2000) An examination of how structural changes can affect the rate of electron transfer in a mutated bacterial photoreaction centre. Biochem J 352: 567–578CrossRefGoogle Scholar
  66. Robert B and Lutz M (1985) Structures of antenna complexes of several Rhodospirillales from their resonance Raman spectra. Biochim Biophys Acta 807: 10–23CrossRefGoogle Scholar
  67. Robert B, Andrianambinintsoa S and Lutz M. (1985) Structural characterization of high 800 nm-absorbing light-harvesting complexes from Rhodospirillales from their resonance Raman spectra. J. Biochem. 98: 349–354PubMedGoogle Scholar
  68. Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs, NW and Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302: 1969–1972PubMedCrossRefGoogle Scholar
  69. Rutkauskas D, Novoderezhkin V, Cogdell RJ and van Grondelle R (2004) Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050. Biochemistry 43: 4431–4438PubMedCrossRefGoogle Scholar
  70. Rutkauskas D, Novoderezhkin V, Cogdell RJ and van Grondelle R (2005) Fluorescence spectroscopy of conformational changes of single LH2 complexes. Biophys J 88: 422–435PubMedCrossRefGoogle Scholar
  71. Rutkauskas D, Novoderezhkin V, Gall A, Olsen J, Cogdell RJ, Hunter CN and van Grondelle R (2006) Spectral trends in the fluorescence of single bacterial light-harvesting complexes: Experiments and modified Redfield simulations. Biophys J 90: 2475–2485PubMedCrossRefGoogle Scholar
  72. Sauer K, Cogdell RJ, Prince SM, Freer A, Isaacs NW and Scheer H (1996) Structure-based calculations of the optical spectra of the LH2 bacteriochlorophyll-protein complex from Rhodopseudomonas acidophila. Photochem Photobiol 64: 564–576CrossRefGoogle Scholar
  73. Savage H, Cyrklaff M, Montoya G, Kühlbrandt W and Sinning I (1996) Two-dimensional structure of light harvesting complex II (LHII) from the purple bacterium Rhodovulum sulfidophilum and comparison with LHII from Rhodopseudomonas acidophila. Structure 4: 243–252PubMedCrossRefGoogle Scholar
  74. Scheuring, S, Seguin J, Marco S, Lévy D, Robert B and Rigaud J-L (2003) Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. Proc Natl Acad Sci USA 100: 1690–1693PubMedCrossRefGoogle Scholar
  75. Scheuring S, Rigaud JL and Sturgis JN (2004) Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum. EMBO J 23: 4127–413PubMedCrossRefGoogle Scholar
  76. Siebert CA, Qian P, Fotiadis D, Engel A, Hunter CN and Bullough PA (2004) Molecular architecture ofphotosyntheticmembranes in Rhodobacter sphaeroides: The role of PufX. EMBO J 23: 690–700PubMedCrossRefGoogle Scholar
  77. Somsen OJG, Valkunas L and van Grondelle R (1996) A perturbed two-level model for exciton trapping in small photosynthetic systems. Biophys J 70: 669–683PubMedCrossRefGoogle Scholar
  78. Somsen OJG, Chernyak V, Frese RN, van Grondelle R and Mukamel S (1998) Excitonic interactions and Stark spectroscopy of light harvesting systems. J Phys Chem B 102: 8893–8908CrossRefGoogle Scholar
  79. Sturgis JN and Robert B (1996) The role of chromophore coupling in tuning the spectral properties of peripheral light-harvesting protein of purple bacteria. Photosynth Res 50: 5–10CrossRefGoogle Scholar
  80. Sturgis JN and Robert B (1997) Pigment binding-site and electronic properties in light-harvesting proteins of purple bacteria. J Phys Chem B 101: 7227–7231CrossRefGoogle Scholar
  81. Sturgis JN, Hageman G, Tadros MH, and Robert B (1995a) Biochemical and spectroscopic characterization of the B800–850 light-harvesting complex from Rhodobacter sulfidophilus and its B800–830 spectral form. Biochemistry 34: 10519–10524PubMedCrossRefGoogle Scholar
  82. Sturgis JN, Jirsakova V, Reiss-Husson F, Cogdell RJ and Robert B (1995b) Structure and properties of the bacteriochlorophyll binding site in peripheral light-harvesting complexes of purple bacteria. Biochemistry 34: 517–523PubMedCrossRefGoogle Scholar
  83. Sturgis JN, Olsen JD, Robert B and Hunter CN (1997) Functions of conserved tryptophan residues of the core light-harvesting complex of Rhodobacter sphaeroides. Biochemistry 36: 2772–2778PubMedCrossRefGoogle Scholar
  84. Sturgis JN, Gall A, Ellervee A, Freiberg A and Robert B (1998) The effect of pressure on the bacteriochlorophyll a binding sites of the core antenna complex from Rhodospirillum rubrum. Biochemistry 37: 14875–14880PubMedCrossRefGoogle Scholar
  85. Timpmann K, Ellervee A, Pullerits T, Ruus R, Sundström V and Freiberg A (2001) Short-range exciton couplings in LH2 photosynthetic antenna proteins studied by high hydrostatic pressure absorption spectroscopy. J Phys Chem B 105: 8436–8444CrossRefGoogle Scholar
  86. Urboniene V, Vrublevskaja O, Trinkunas G, Gall A, Robert B and Valkunas L. (2007) Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2 Biophys J 93: 2188–2198PubMedCrossRefGoogle Scholar
  87. van Grondelle R, Dekker JP, Gillbro T and Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65CrossRefGoogle Scholar
  88. van Grondelle R, Monshouwer R, and Valkunas L (1997) Photosynthetic light-harvesting. Pure Appl Chem 69: 1211–1218CrossRefGoogle Scholar
  89. Van Mourik F, Visschers RW and van Grondelle R (1992) Energy transfer and aggregate size effects in the inhomogeneously broadened core light-harvesting complex of Rhodobacter sphaeroides. Chem Phys Lett 193: 1–7CrossRefGoogle Scholar
  90. Van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1999a) Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science 285: 400–402PubMedCrossRefGoogle Scholar
  91. Van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1999b) Spectroscopy of individual LH2 complexes of Rhodopseudomonas acidophila: Localized excitations in the B800 band. Chem Phys 247: 53–60CrossRefGoogle Scholar
  92. Visser HM, Somsen OJG, von Mourik F, Lin S, van Stokkum IHM and van Grondelle R (1995) Direct observation of sub-picosecond equilibration of excitation energy in the light-harvesting antenna of Rhodospirillum rubrum. Biophys J 69: 1083–1099PubMedCrossRefGoogle Scholar
  93. Walz T and Ghosh R (1997) Two-dimensional crystallization of the light-harvesting I-reaction center photounit from Rhodospirillum rubrum. J Mol Biol 265: 107–111PubMedCrossRefGoogle Scholar
  94. Walz T, Jamieson SJ, Bowers CM, Bullough PA and Hunter CN (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 Å, LH1 and RC-LH1 at 25 Å. J Mol Biol 282: 833–845PubMedCrossRefGoogle Scholar
  95. Zuber H, and Brunisholz RA (1991) Structure and function of antenna polypeptides and chlorophyll-protein complexes: principles and variability. In Scheer H (ed) Chlorophylls, pp 627–703. CRC, Boca RatonGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Institut de Biologie et de Technologie de SaclayCEAFrance
  2. 2.CNRSGif/YvetteFrance

Personalised recommendations