Advertisement

An Overview of Purple Bacteria: Systematics, Physiology, and Habitats

  • Michael T. Madigan
  • Deborah O. Jung
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 28)

Summary

Anoxygenic phototrophic purple bacteria are a major group of photosynthetic microorganisms widely distributed in nature, primarily in aquatic habitats. Nearly 50 genera of these organisms are known and some have become prime model systems for the experimental dissection of photosynthesis. Purple sulfur bacteria differ from purple nonsulfur bacteria on both metabolic and phylogenetic grounds, but species of the two major groups often coexist in illuminated anoxic habitats in nature. Purple sulfur bacteria are strong photoautotrophs and capable of limited photoheterotrophy, but they are poorly equipped for metabolism and growth in the dark. By contrast, purple nonsulfur bacteria, nature’s preeminent photoheterotrophs, are capable of photoautotrophy, and possess diverse capacities for dark metabolism and growth. Several purple bacteria inhabit extreme environments, including extremes of temperature, pH, and salinity. Collectively, purple bacteria are important phototrophs because they (1) consume a toxic substance, H2S, and contribute organic matter to anoxic environments by their autotrophic capacities; (2) consume organic compounds, primarily non-fermentable organic compounds, in their roles as photoheterotrophs; and (3) offer scientists in the photosynthesis community a smörgasbord of molecular diversity for the study of photosynthesis.

Keywords

Photosynthetic Bacterium Purple Bacterium Anoxygenic Phototrophic Bacterium Purple Nonsulfur Bacterium Anoxygenic Photosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BChl

bacteriochlorophyll

LH

light-harvesting

Rba.

Rhodobacter

Rcy.

Rhodocyclus

Rfx.

Rhodoferax

Rps.

Rhodopseudomonas

Rsp.

Rhodospirillum

Tch.

Thermochromatium

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach LA, Carey JR and Madigan MT (2001) Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Appl Environ Microbiol 67: 2922–2926PubMedCrossRefGoogle Scholar
  2. Biebl H and Pfennig N (1981) Isolation of members of the family Rhodospirillaceae. In: Starr MP, Stolp H, Trüper HG, Balows A and Schlegel HG (eds) The Prokaryotes — a Handbook on Habitats, Isolation and Identification of Bacteria, pp 267–273. Springer-Verlag, New YorkGoogle Scholar
  3. Blankenship RE, Madigan MT and Bauer CE (1995) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2). Kluwer Academic Publishers, DordrechtGoogle Scholar
  4. Brune DC (1995) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 847–870. Kluwer Academic Publishers, DordrechtGoogle Scholar
  5. Bryantseva IA, Gorlenko VM, Kompantseva EI and Imhoff JF (2000) Thioalkalicococcus limnaeus gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Bacteriol 50: 2157–2163Google Scholar
  6. Bryantseva IA, Gorlenko VM, Kompantseva EI, Imhoff JF, Süling J and Mityushina L (1999) Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol 49: 697–703PubMedGoogle Scholar
  7. Burke CM and Burton HR (1988) Photosynthetic bacteria in meromictic lakes and stratified fjords of the Vestfold Hills, Antarctica. Hydrobiologia 165: 13–23CrossRefGoogle Scholar
  8. Caldwell DE and Tiedje JM (1975a) A morphological study of anaerobic bacteria from the hypolimnia of two Michigan lakes. Can J Microbiol 21: 362–376PubMedGoogle Scholar
  9. Caldwell DE and Tiedje JM (1975b) The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can J Microbiol 21: 377–385PubMedGoogle Scholar
  10. Castenholz RW (1977) The effect of sulfide on the blue-green algae of hot springs II. Yellowstone National Park. Microbial Ecology 3: 79–105CrossRefGoogle Scholar
  11. Castenholz RW and Pierson BK (1995) Ecology of thermophilic anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Phototrophic Bacteria, pp 87–103. Kluwer Academic Publishers, DordrechtGoogle Scholar
  12. Cohen-Bazire G, Sistrom WR and Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49: 25–68CrossRefGoogle Scholar
  13. Cooper DE, Rands MB and Woo C-P (1975) Sulfide reduction in fellmongery effluent by red sulfur bacteria. J Water Pollution Control Fed 47: 2088–2100Google Scholar
  14. Czeczuga B (1968) Primary production of the purple sulphuric bacteria, Thiopedia rosea Winogr. (Thiorhodaceae). Photosynthetica 2: 161–166Google Scholar
  15. Ehrenreich A and Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60: 4517–4526PubMedGoogle Scholar
  16. Favinger J, Stadtwald R and Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerantcyst-forming anoxygenic photosynthetic bacterium. Ant van Leeuwenhoek 55: 291–296CrossRefGoogle Scholar
  17. Frigaard NU and Bryant DA (2004) Seeing green bacteria in a new light: Genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182: 265–276PubMedCrossRefGoogle Scholar
  18. Garcia D, Parot P, Verméglio A and Madigan MT (1986) The light-harvesting complexes of a thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum. Biochim Biophys Acta 850: 390–395CrossRefGoogle Scholar
  19. Gibson J and Harwood CS (1995) Degradation of aromatic compounds by nonsulfur purple bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 991–1003. Kluwer Academic Publishers, DordrechtGoogle Scholar
  20. Glaeser J and Overmann J (1999) Selective enrichment and characterization of Roseospirillumparvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch Microbiol 171: 405–416PubMedCrossRefGoogle Scholar
  21. Griffin BM, Schott J and Schink B (2007) Nitrite, an electron donor for anoxygenic photosynthesis. Science 316: 1870PubMedCrossRefGoogle Scholar
  22. Guerrero R, Montesinos E, Pedrós-Alió C, Esteve I, Mas J, van Gemerden H, Hofman PAG and Bakker JF (1985) Phototrophic sulfur bacteria in two Spanish lakes: Vertical distribution and limiting factors. Limnol Oceanogr 30: 919–931Google Scholar
  23. Gurgen V, Kirchner G and Pfennig N (1976) Fermentation of pyruvate by 7 species of phototrophic purple bacteria. Z Allg Mikrobiolo 16: 573–586CrossRefGoogle Scholar
  24. Hansen TA and van Gemerden H (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Mikrobiol 86: 49–56PubMedCrossRefGoogle Scholar
  25. Hansen TA and Veldkamp H (1973) Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria. Arch Mikrobiol 92: 45–58PubMedCrossRefGoogle Scholar
  26. Heda GD and Madigan MT (1988) Thermal properties and oxygenase activity of ribulose-1,5-bisphosphate carboxylase from the thermophilic purple bacterium, Chromatium tepidum. FEMS Microbiol Lett 51: 45–50CrossRefGoogle Scholar
  27. Heda GD and Madigan MT (1989) Purification and characterization of the thermostable ribulose-1,5-bisphosphate carboxylase/oxygenase from the thermophilic purple bacterium Chromatium tepidum. Eur J Biochem 184: 313–319PubMedCrossRefGoogle Scholar
  28. Holm HW and Vennes JW (1970) Occurrence of purple sulfur bacteria in a sewage treatment lagoon. Appl Microbiol 19: 988–996PubMedGoogle Scholar
  29. Imhoff JF (2001) True marine and halophilic anoxygenic phototrophic bacteria. Arch Microbiol 176: 243–254PubMedCrossRefGoogle Scholar
  30. Imhoff JF and Madigan MT (2004) International Committee on Systematics of Prokaryotes Subcommitteee on the taxonomy of phototrophic bacteria. Minutes of the meetings, 27 August 2003, Tokyo, Japan. Int J Syst Evol Microbiol 54: 1001–1003CrossRefGoogle Scholar
  31. Imhoff JF, Hashwa F and Trüper HG (1978) Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Arch Hydrobiol 84: 381–388Google Scholar
  32. Imhoff JF, Sahl HG, Soliman GSH and Trüper HG (1979) The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1: 219–234CrossRefGoogle Scholar
  33. Imhoff JF, Hiraishi A and Süling J (2005) Anoxygenic phototrophic bacteria. In: Brenner DJ, Krieg NR and Staley JT (eds) Bergey’s Manual of Systematic Bacteriology, 2nd ed, Vol 2, part A, pp 119–132. Springer, New YorkGoogle Scholar
  34. Jones BR (1956) Studies of pigmentednon-sulfur purple bacteria in relation to cannery waste lagoon odors. Sewage Ind Wastes 28: 883–893Google Scholar
  35. Jung DO, Achenbach LA, Karr EA, Takaichi S and Madigan MT (2004) A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica. Arch Microbiol 182: 236–243PubMedCrossRefGoogle Scholar
  36. Kämpf C and Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127: 125–135CrossRefGoogle Scholar
  37. Karr EL, Sattley WM, Jung DO, Madigan MT and Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol 69: 4910–4914PubMedCrossRefGoogle Scholar
  38. Kimble-Long LK and Madigan MT (2002) Irradiance effects on growth and bacteriochlorophyll content of phototrophic heliobacteria, purple and green photosynthetic bacteria. Photosynthetica 40: 629–632CrossRefGoogle Scholar
  39. Kobayashi M (1975) Role of photosynthetic bacteria in foul water purification. Prog Water Technol 7: 309–315Google Scholar
  40. Kondratieva EN, Zhukov VG, Ivanovsky RN, Petushkova YP and Monosov EZ (1976) The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108: 287–292PubMedCrossRefGoogle Scholar
  41. Kramer H and Amesz J (1996) Antenna organization in the purple sulfur bacteria Chromatium tepidum and Chromatium vinosum. Photosynth Res 49: 237–244CrossRefGoogle Scholar
  42. Kulichevskaya IS, Guzev VS, Gorlenko VM, Liesack W and Dedysh SN (2006) Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog. Intl J Syst Evol Microbiol 56: 1397–1402CrossRefGoogle Scholar
  43. Mack EE, Mandelco L, Woese CR and Madigan MT (1993) Rhodospirillum sodomense, sp. nov., a Dead Sea Rhodospirillum species. Arch Microbiol 160: 363–371CrossRefGoogle Scholar
  44. Madigan MT (1984) A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring. Science 225: 313–315PubMedCrossRefGoogle Scholar
  45. Madigan MT (1986) Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. Int J Syst Bacteriol 36: 222–227Google Scholar
  46. Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: AJB Zehnder (ed) Biology of Anaerobic Microorganisms, pp 39–111, John Wiley & Sons, New YorkGoogle Scholar
  47. Madigan MT (1995) Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 915–928. Kluwer Academic Publishers, DordrechtGoogle Scholar
  48. Madigan MT (1998) Isolation and characterization of psychrophilic purple bacteria from Antarctica. In: Peschek GA, Löffelhardt W and Schmetterer G (eds) The Phototrophic Prokaryotes, pp 699–706. Plenum, New YorkGoogle Scholar
  49. Madigan MT (2003) Anoxygenic phototrophic bacteria from extreme environments. Photosynth Res 76: 157–171PubMedCrossRefGoogle Scholar
  50. Madigan MT and Gest H (1978) Growth of a photosynthetic bacterium anaerobically in darkness, supportedby ‘oxidant-dependent’ sugar fermentation. Arch Microbiol 117: 119–122PubMedCrossRefGoogle Scholar
  51. Madigan MT and Gest H (1979) Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol 137: 524–530PubMedGoogle Scholar
  52. Madigan MT, Cox SS and Stegeman RA (1984) Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J Bacteriol 157: 73–78PubMedGoogle Scholar
  53. Madigan MT, Jung DO, Woese CR and Achenbach LA (2000) Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch. Microbiol. 173: 269–277PubMedCrossRefGoogle Scholar
  54. McClain J, Rollo DR, Rushing BG and Bauer CE (2002) Rhodospirillum centenum utilizes separate motor and switch components to control lateral and polar flagellum rotation. J Bacteriol 184: 2429–2438PubMedCrossRefGoogle Scholar
  55. Milford AD, Achenbach LA, Jung DO and Madigan MT (2000) Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 174: 18–27PubMedCrossRefGoogle Scholar
  56. Nagashima KVP, Hiraishi A, Shimada K and Matsuura K (1997) Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 45: 131–136PubMedCrossRefGoogle Scholar
  57. Nogi T, Fathir I, Kobayashi M, Nozawa T and Miki K (2000) Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: Thermostability and electron transfer. Proc Natl Acad Sci USA 97: 13561–13566PubMedCrossRefGoogle Scholar
  58. Nozawa T and Madigan MT (1991) Temperature and solvent effects on reaction centers from Chloroflexus aurantiacus and Chromatium tepidum. J Biochem 110: 588–594PubMedGoogle Scholar
  59. Nozawa T, Fukada T, Hatano M and Madigan MT (1986) Organization of intracytoplasmic membranes in a novel thermophilic purple photosynthetic bacterium as revealed from absorption, circular dichroism, and emission spectra. Biochim Biophys Acta 852: 191–197CrossRefGoogle Scholar
  60. Overmann J and Schubert K (2002) Phototrophic consortia: Model systems for symbiotic interrelations between prokaryotes. Arch Microbiol 177: 201–208PubMedCrossRefGoogle Scholar
  61. Overmann J, Beatty JT and Hall KJ (1994) Photosynthetic activity and population dynamics of Amoebobacter purpureus in a meromictic saline lake. FEMS Microbiol Ecol 15: 309–320CrossRefGoogle Scholar
  62. Overmann J, Beatty JT and Hall KJ (1996) Purple sulfur bacteria control the growth of aerobic heterotrophic bacterioplankton in a meromictic salt lake. Appl Environ Microbiol 62: 3251–3258PubMedGoogle Scholar
  63. Overmann J, Hall KJ, Northcote TG and Beatty JT (1999) Grazing of the copepod Diaptomus connexus on purple sulphur bacteria in a meromictic salt lake. Environ Microbiol 1: 213–221PubMedCrossRefGoogle Scholar
  64. Pattaragulwanit K, Brune DC, Trüper HG and Dahl C (1998) Molecular genetic evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum. Arch Microbiol 169: 434–444PubMedCrossRefGoogle Scholar
  65. Permentier HP, Neerken S, Overmann J and Amesz J (2001) A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm. Biochemistry 40: 5573–5578PubMedCrossRefGoogle Scholar
  66. Pfennig N (1967) Photosynthetic bacteria. Ann Rev Microbiol 21: 285–324CrossRefGoogle Scholar
  67. Pfennig N (1969) Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. J Bacteriol 99: 597–602PubMedGoogle Scholar
  68. Pfennig N (1974) Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae. Arch Microbiol 100: 197–206CrossRefGoogle Scholar
  69. Pfennig N (1975) The phototrophic bacteria and their role in the sulfur cycle. Plant Soil 43: 1–16CrossRefGoogle Scholar
  70. Pfennig N (1978a) General physiology and ecology of photosynthetic bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 3–18. Plenum Press, New YorkGoogle Scholar
  71. Pfennig N (1978b) Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shape, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28: 283–288Google Scholar
  72. Pfennig N (1989) Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel HG and Bowien B (eds) Autotrophic Bacteria, pp 97–116. Springer-Verlag, HeidelbergGoogle Scholar
  73. Raymond J, Zhaxybayeva O, Gogarten JP and Blankenship RE (2003) Evolution of photosynthetic prokaryotes: A maximum-likelihood mapping approach. Phil Tran Roy Soc Lond B Biol Sci 358: 223–230CrossRefGoogle Scholar
  74. Resnick SM and Madigan MT (1989) Isolation and characterization of a mildly thermophilic nonsulfur purple bacterium containing bacteriochlorophyll b. FEMS Microbiol Lett 65: 165–170CrossRefGoogle Scholar
  75. Satoh T, Hoshino Y and Kitamura H (1976) Rhodopseudomonas sphaeroides forma sp. denitrificans, a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides. Arch Microbiol 108: 265–269PubMedCrossRefGoogle Scholar
  76. Sattley WM and Madigan MT (2006) Isolation, characterization and ecology of cold-active, chemolithotrophic sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microbiol 72: 5562–5568PubMedCrossRefGoogle Scholar
  77. Schultz JE and Weaver PF (1982) Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. J Bacteriol 149: 181–190PubMedGoogle Scholar
  78. Siefert E and Koppenhagen VB (1982) Studies on the vitamin B12 auxo trophy of Rhodocydus purpureus and two other vitamin B12-requiring purple nonsulfur bacteria. Arch Microbiol 132: 173–178CrossRefGoogle Scholar
  79. Siefert E, Irgens RL and Pfennig N (1978) Phototrophic purple and green bacteria in a sewage treatment plant. Appl Environ Microbiol 35: 38–44PubMedGoogle Scholar
  80. Sojka GA (1978) Metabolism of nonaromatic organic compounds. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 707–718. Plenum Press, New YorkGoogle Scholar
  81. Stadtwald-Demchick R, Turner FR and Gest H (1990) Rhodopseudomonas cryptolactis, sp. nov., anew thermotolerant species of budding phototrophic purple bacteria. FEMS Microbiol Lett 71: 117–121CrossRefGoogle Scholar
  82. Tabita FR (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 885–914. Kluwer Academic Publishers, DordrechtGoogle Scholar
  83. Takahashi M and Ichimura S (1968) Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol Oceanog 13: 644–655CrossRefGoogle Scholar
  84. Takaichi S, Jung DO and Madigan MT (2001) Accumulation of unusual carotenoids in the spheroidene pathway, demethylspheroidene and demethylspheroidenone, in an alkaliphilic purple nonsulfur bacterium Rhodobaca bogoriensis. Photosynth Res 67: 207–214PubMedCrossRefGoogle Scholar
  85. Trüper HG (1978) Sulfur metabolism. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 677–690. Plenum Press, New YorkGoogle Scholar
  86. Trüper HG (1981) Versatility of carbon metabolism in phototrophic bacteria. In: Dalton H (ed) Microbial Growth on C1 Compounds, pp 116–121. Heyden, LondonGoogle Scholar
  87. Trüper HG and Fischer U (1982) Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. Phil Trans Roy Soc Lond B 298: 529–542CrossRefGoogle Scholar
  88. Trüper HG and Pfennig N (1981) Characterization and identification of the anoxygenic phototrophic bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A and Schlegel HG (eds.) The Prokaryotes, a Handbook on Habitatss, Isolation, and Identification of Bacteria, pp 299–312. Springer-Verlag, New YorkGoogle Scholar
  89. Uffen RL and Wolfe RS (1970) Anaerobic growth of purple nonsulfur bacteria under dark conditions. J Bacteriol 104: 462–472PubMedGoogle Scholar
  90. van Gemerden H (1968) On the ATP generation by Chromatium in darkness. Arch Mikrobiol 64: 118–124PubMedCrossRefGoogle Scholar
  91. van Gemerden H and Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 50–85. Kluwer Academic Publishers, DordrechtGoogle Scholar
  92. van Niel CB (1932) On the morphology and physiology of the purple and green sulphur bacteria. Arch Mikrobiol 3: 1–112CrossRefGoogle Scholar
  93. van Niel CB (1944) The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 8: 1–118PubMedGoogle Scholar
  94. Ward DM, Weller R, Shiea J, Castenholz RW and Cohen Y (1989) Hot spring microbial mats: anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 3–15. American Society for Microbiology, Washington, DCGoogle Scholar
  95. Zengler K, Heider J, Rossello-Mora R and Widdel F (1999) Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch Microbiol 172: 204–212PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Department of MicrobiologySouthern Illinois UniversityCarbondaleUSA

Personalised recommendations