Skip to main content

Site Specific Identification of N-Linked Glycosylation in Proteins by Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry

  • Conference paper
  • 851 Accesses

Abstract

Recently, we reported the characterization of the glycans attached at the 11 N-glycosylation sites of Hepatitis C virus E2 envelope glycoprotein by tandem mass spectrometry. Infections caused by Hepatitis C virus represent the main cause of liver diseases such as hepatitis, cirrhosis and hepatocellular carcinoma. The N-linked sugars consist primarily of high mannose glycans, with structures ranging from the minimal core structure, Man3GlcNAc2 (Man3) up to 12 hexose residues attached to the GlcNAc-ß(l–4)-GlcNAc core (depicted as Hex3Man9GlcNAc2). Furthermore, the site N41 (N423) was observed to contain complex type glycans with the structures Man3-GlcNAc and Man3-GlcNAcFuc, in addition to the high mannose population Man3 through Man6, while the site N48 (N430) was occupied exclusively with complex type glycans (Man3-Fuc, Man3-GlcNAcFuc and Man3-GlcNAc2Fuc). The present contribution summarizes our experimental observations upon the factors which may have an impact on the CID tandem mass spectra of glycopeptides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marsh, M. and A. Helenius, Virus entry: open sesame. Cell, 2006. 124(4): 729-40.

    Article  CAS  PubMed  Google Scholar 

  2. Slawson, C., M.P. Housley, and G.W. Hart, O-GlcNAc cycling: how a single sugar post- translational modification is changing the way we think about signaling networks. J Cell Biochem, 2006. 97(1): 71-83.

    Article  CAS  PubMed  Google Scholar 

  3. Smith, A.E. and A. Helenius, How viruses enter animal cells. Science, 2004. 304(5668): 237-42.

    Article  CAS  PubMed  Google Scholar 

  4. Wormald, M.R. and R.A. Dwek, Glycoproteins: glycan presentation and protein-fold stabi- lity. Structure, 1999. 7(7): R155-60.

    Article  CAS  PubMed  Google Scholar 

  5. Apweiler, R., H. Hermjakob, and N. Sharon, On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta, 1999. 1473(1): 4-8.

    CAS  PubMed  Google Scholar 

  6. Kornfeld, R. and S. Kornfeld, Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem, 1985. 54: 631-64.

    Article  CAS  PubMed  Google Scholar 

  7. Gavel, Y. and G. von Heijne, Sequence differences between glycosylated and non- glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng, 1990. 3(5): 433-42.

    Article  CAS  PubMed  Google Scholar 

  8. Srebalus Barnes, C.A. and A. Lim, Applications of mass spectrometry for the structural characterization of recombinant protein pharmaceuticals. Mass Spectrom Rev, 2007. 26(3): 370-88.

    Article  PubMed  Google Scholar 

  9. Fenn, J.B., et al., Electrospray ionization for mass spectrometry of large biomolecules. Sci- ence, 1989. 246(4926): 64-71.

    CAS  Google Scholar 

  10. Hillenkamp, F., et al., Matrix-assisted laser desorption/ionization mass spectrometry of bio- polymers. Anal Chem, 1991. 63(24): 1193A-1203A.

    Article  CAS  PubMed  Google Scholar 

  11. Wuhrer, M., A.M. Deelder, and C.H. Hokke, Protein glycosylation analysis by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2005.825(2): 124-33.

    CAS  PubMed  Google Scholar 

  12. Zaia, J., Mass spectrometry of oligosaccharides. Mass Spectrom Rev, 2004. 23(3): 161-227.

    Article  CAS  PubMed  Google Scholar 

  13. Huddleston, M.J., M.F. Bean, and S.A. Carr, Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem, 1993. 65(7): 877-84.

    Article  CAS  PubMed  Google Scholar 

  14. Ciucanu, I., Per-O-methylation reaction for structural analysis of carbohydrates by mass spectrometry. Anal Chim Acta, 2006. 576(2): 147-55.

    Article  CAS  PubMed  Google Scholar 

  15. Harazono, A., et al., Site-specific N-glycosylation analysis of human plasma ceruloplasmin using liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Biochem, 2006. 348(2): 259-68.

    Article  CAS  PubMed  Google Scholar 

  16. Wuhrer, M., et al., IPSE/alpha-1, a major secretory glycoprotein antigen from schistosome eggs, expresses the Lewis X motif on core-difucosylated N-glycans. Febs J, 2006. 273(10): 2276-92.

    Article  CAS  PubMed  Google Scholar 

  17. Wuhrer, M., et al., Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci, 2007. 849(1-2): 115-28.

    CAS  PubMed  Google Scholar 

  18. Iacob, R., Perdivara, I., Przybylski, M., and Tomer, K.B., Mass spectrometric characteri-zation of glycosylation of Hepatitis C virus E2 envelope glycoprotein reveals extended micro-heterogeneity of N-glycans. JASMS, 2007.

    Google Scholar 

  19. Rehermann, B. and M. Nascimbeni, Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol, 2005. 5(3): 215-29.

    Article  CAS  PubMed  Google Scholar 

  20. Randall, G. and C.M. Rice, Hepatitis C virus cell culture replication systems: their potential use for the development of antiviral therapies. Curr Opin Infect Dis, 2001. 14(6): 743-7.

    CAS  PubMed  Google Scholar 

  21. Duvet, S., et al., Hepatitis C virus glycoprotein complex localization in the endoplasmic reticulum involves a determinant for retention and not retrieval. J Biol Chem, 1998. 273 (48): 32088-95.

    Article  CAS  PubMed  Google Scholar 

  22. Domon, B. and Costello, C.E., A Systematic Nomenclature for Carbohydrate Fragmenta-tions in FAB-MS/MS Spectra of Glycoconjugates. Glycoconjugate J, 1988. 5: 397-409.

    Article  CAS  Google Scholar 

  23. Paizs, B. and S. Suhai, Fragmentation pathways of protonated peptides. Mass Spectrom Rev, 2005. 24(4): 508-48

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Perdivara, I., Iacob, R.E., Przybylski, M., Tomer, K.B. (2008). Site Specific Identification of N-Linked Glycosylation in Proteins by Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry. In: Popescu, C., Zamfir, A.D., Dinca, N. (eds) Applications of Mass Spectrometry in Life Safety. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8811-7_8

Download citation

Publish with us

Policies and ethics