Mapping and Sequencing of Gangliosides from Anencephaly by Electrospray Ionization High Capacity Ion Trap Mass Spectrometry

  • Cristina Mosoarca
  • Z̆eljka Vukelić
  • Alina D. Zamfir
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Congenital malformation referred to as anencephaly is a neural tube defect that occurs when the cephalic end of the neural tube fails to close, resulting in the absence of a major portion of the brain, skull, and scalp. Infants with this disorder are born without a forebrain—the largest part of the brain consisting mainly of the cerebrum, which is responsible for thinking and coordination. Although some individuals with anencephaly may be born with a rudimentary brain stem, the lack of a functioning cerebrum permanently rules out the possibility of ever gaining consciousness. Gangliosides (GGs) are sialylated glycosphingolipids present in the cell plasma membrane, responsible for the modulation of the cell signal transduction events. GGs act as receptors of interferon, epidermal growth factor, nerve growth factor and are differently expressed in various pathological states of central nervous system (CNS) acting as biomarkers of CNS disorders. In this study a native GG mixture extracted and purified from a histopathologically-defined anencephalic fetal brain remnant was analyzed by electrospray ionization high capacity ion trap mass spectrometry. Structural data upon disease-associated species were collected by multiple stage collision-induced dissociation of the molecular ions. As a control a native GG mixture from a normal fetal brain in the same developmental stage was used. Comparative screening and sequencing revealed the differential expression of the GGs in aberrant vs. healthy tissue and provided accurate information upon the structure of several anencephaly-associated species.

Keywords

HPLC Glycerol Hydration Carbohydrate Electrophoresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.G. Joó, A. Beke, C. Papp, et al, Neural tube defects in the sample of genetic counselling, Prenat. Diagn. (2007) 27 912-921.CrossRefPubMedGoogle Scholar
  2. 2.
    M. Cedergren, A. Selbing, Detection of fetal structural abnormalities by an 11-14-week ultrasound dating scan in an unselected Swedish population, Acta obstetricia et gynecologica Scandinavica 85 (2006) 912-915.PubMedCrossRefGoogle Scholar
  3. 3.
    B. Merker, Consciousness without a cerebral cortex: a challenge forneuroscience and medicine, The Behavioral and brain sciences 30 (2007) 63-81.PubMedGoogle Scholar
  4. 4.
    K.J. Kaneko, M.J. Kohn, C. Liu, M.L. Depamphilis, Transcription factor TEAD2 is involved in neural tube closure, Genesis 45 (2007) 577-587.CrossRefPubMedGoogle Scholar
  5. 5.
    S. Liang, M. Wang, R.I. Tapping, V. Stepensky, H.F. Nawar, M. Triantafilou, K. Triantafilou, T.D. Connell, G. Hajishengallis, Ganglioside GD1a is an essential coreceptor for Toll-like receptor 2 signaling in response to the B subunit of type IIb enterotoxin, J. Biol. Chem. 282 (2007) 7532-7542.CrossRefPubMedGoogle Scholar
  6. 6.
    M. Saito, K. Sugiyama, Tissue-specific expression of c-series gangliosides in the extraneural system, Biochim. Biophys. Acta 1474 (2000) 88-92.PubMedGoogle Scholar
  7. 7.
    L. Svennerholm, Identification of the accumulated ganglioside, Adv Genet. 44 (2001) 33-41.CrossRefPubMedGoogle Scholar
  8. 8.
    I. Kracun, H. Rosner, V. Drnovsek, Z. Vukeliü, C. Cosovic, M. Trbojevic-Cepe, M. Kubat, Gangliosides in the human brain development and aging, Neurochem. Int. 20 (1992) 421-431.CrossRefPubMedGoogle Scholar
  9. 9.
    S. Ngamukote, M. Yanagisawa, T. Ariga, S. Ando, R.K. Yu, Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains, J. Neurochem. 103 (2007) 327-341.CrossRefGoogle Scholar
  10. 10.
    M. Saito, R.F. Mao, R. Wang, C. Vadasz, M. Saito, Effects of gangliosides on ethanol- induced neurodegeneration in the developing mouse brain, Alcohol Clin. Exp. Res. 31 (2007) 665-674.PubMedGoogle Scholar
  11. 11.
    T. Okada, M. Wakabayashi, K. Ikeda, K. Matsuzaki, Formation of toxic fibrils of Alzheimer's amyloid beta-protein-(1-40) by monosialoganglioside GM1, a neuronal membrane component., J. Mol. Biol. 371 (2007) 481-489.CrossRefPubMedGoogle Scholar
  12. 12.
    M. Zappia, L. Crescibene, D. Bosco, G. Arabia, G. Nicoletti, A. Bagalà, L. Bastone, I.D. Napoli, M. Caracciolo, S. Bonavita, A. Di. Costanzo, A. Gambardella, A. Quattrone, Anti-GM1 ganglioside antibodies in Parkinson's disease, Acta Neurol. Scand. 106 (2002) 54-57.CrossRefPubMedGoogle Scholar
  13. 13.
    Z. Vukeliü, S. Kalanj-Bognar, M. Froesch, L. Bîndila, B. Radiü, M. Allen, J. PeterKataliniü, A.D. Zamfir. Human gliosarcoma-associated ganglioside composition is complex and distinctive as evidenced by high-performance mass spectrometric determination and structural characterization, Glycobiology 17 (2007) 504-515.CrossRefGoogle Scholar
  14. 14.
    K.M. Hedberg, R. Mahesparan, T.A. Read, B.B. Tysnes, F. Thorsen, T. Visted, R. Bjerkvig, P. Fredman, The glioma-associated gangliosides 3'-isoLM1, GD3 and GM2 show selective area expression in human glioblastoma xenografts in nude rat brains, Neuropathol. Appl. Neurobiol. 27 (2001) 451-464.CrossRefPubMedGoogle Scholar
  15. 15.
    A. Markowska-Woyciechowska, A. Bronowicz, M. Ugorski, E. Gamian, P. JabáoĔski, Study on ganglioside composition in brain tumours supra- and infratentorial, Neurol. Neurochir. Pol. 34 (2000) 24-30.Google Scholar
  16. 16.
    M. Potapenko, G.V. Shurin, J. de León, Gangliosides as immunomodulators, Adv. Exp. Med. Biol. 601 (2007) 195-203.PubMedGoogle Scholar
  17. 17.
    S. Modak, N.K. Cheung, Disialoganglioside directed immunotherapy of neuroblastoma, Cancer Invest. 25 (2007) 67-77.CrossRefPubMedGoogle Scholar
  18. 18.
    J. Müthing, Analyses of glycosphingolipids by high-performance liquid chromatography, Methods. Enzymol. 312 (2000) 45-64.CrossRefPubMedGoogle Scholar
  19. 19.
    J. Müthing, TLC in structure and recognition studies of glycosphingolipids, Methods. Mol. Biol. 76 (1998) 183-195.PubMedGoogle Scholar
  20. 20.
    H. Egge, J. Peter-Kataliniü, G. Reuter, R. Schauer, R. Ghidoni, S. Sonnino, G. Tettamanti, Analysis of gangliosides using fast atom bombardment mass spectrometry, Chem. Phys. Lipids 37 (1985) 127-141.CrossRefPubMedGoogle Scholar
  21. 21.
    S.B. Levery, Glycosphingolipid structural analysis and glycosphingo-lipidomics, Methods Enzymol. 405 (2005) 300-369.CrossRefPubMedGoogle Scholar
  22. 22.
    P.B. O'Connor, B.A. Budnik, V.B. Ivleva, P. Kaur, S.C. Moyer, J.L. Pittman, C.E. Costello, A high pressure matrix-assisted laser desorption ion source for Fourier transform mass spectrometry designed to accommodate large targets with diverse surfaces, J. Am. Soc. Mass Spectrom. 15 (2004) 128-132.CrossRefPubMedGoogle Scholar
  23. 23.
    P.B. O'Connor, E. Mirgorodskaya, C.E. Costello, High pressure matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for minimization of ganglioside fragmentation, J. Am. Soc. Mass Spectrom. 13 (2002) 402-407.CrossRefPubMedGoogle Scholar
  24. 24.
    Z. Vukeliü, M. Zarei, J. Peter-Kataliniü, A.D. Zamfir, Analysis of human hippocampus gangliosides by fully-automated chip-based nanoelectrospray tandem mass spectrometry, J. Chromatogr. A. 1130 (2006) 238-245.CrossRefGoogle Scholar
  25. 25.
    Z.C. Tsui, Q.R. Chen, M.J. Thomas, M. Samuel, Z.A. Cui, Method for profiling gangliosides in animal tissues using electrospray ionization-tandem mass spectrometry, Anal. Biochem. 341 (2005) 251-258.CrossRefPubMedGoogle Scholar
  26. 26.
    W. Metelmann, J. Peter-Kataliniü, J. Müthing, Gangliosides from human granulocytes: a nano-ESI QTOF mass spectrometry fucosylation study of low abundance species in complex mixtures, J. Am. Soc. Mass Spectrom. 12 (2001) 964-973.CrossRefPubMedGoogle Scholar
  27. 27.
    Z. Vukeliü, A.D. Zamfir, L. Bindila, M. Froesch, J. Peter-Kataliniü, S. Usuki, R.K. Yu, Screening and sequencing of complex sialylated and sulfated glycosphingolipid mixtures by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry, J. Am. Soc. Mass Spectrom. 16 (2005) 571-580.CrossRefGoogle Scholar
  28. 28.
    V.B. Ivleva, L.M. Sapp, P.B. O'Connor, C.E. Costello, Ganglioside analysis by thin-layer chromatography matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry, J. Am. Soc. Mass Spectrom. 16 (2005) 1552-1560.CrossRefPubMedGoogle Scholar
  29. 29.
    V.B. Ivleva, Y.N. Elkin, B.A. Budnik, S.C. Moyer, P.B. O'Connor, C.E. Costello, Coupling thin-layer chromatography with vibrational cooling matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for the analysis of ganglioside mixtures, Anal. Chem. 76 (2004) 6484-6491.CrossRefPubMedGoogle Scholar
  30. 30.
    K. Dreisewerd, J. Müthing, A. Rohlfing, I. Meisen, Z. Vukeliü, J. Peter-Kataliniü, F. Hillenkamp, S. Berkenkamp, Analysis of gangliosides directly from thin-layer chromatography plates by infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry with a glycerol matrix, Anal. Chem. 77 (2005) 4098-4107.CrossRefPubMedGoogle Scholar
  31. 31.
    L.K. Sorensen, A liquid chromatography/tandem mass spectrometric approach for the determination of gangliosides GD3 and GM3 in bovine milk and infant formulae, Rapid. Commun. Mass Spectrom. 20 (2006) 3625-3633.CrossRefPubMedGoogle Scholar
  32. 32.
    A.D. Zamfir, J. Peter-Kataliniü, Capillary electrophoresis-mass spectrometry for glyco- screening in biomedical research, Electrophoresis 25 (2004) 1949-1963.CrossRefPubMedGoogle Scholar
  33. 33.
    A.D. Zamfir, Z. Vukeliü, J. Peter-Kataliniü, A capillary electrophoresis and off-line capillary electrophoresis/electrospray ionization-quadrupole time of flight-tandem mass spectrometry approach for ganglioside analysis, Electrophoresis 23 (2002) 2894-2903.CrossRefPubMedGoogle Scholar
  34. 34.
    D.D. Ju, C.C. Lai, G.R. Her, Analysis of gangliosides by capillary zone electrophoresis and capillary zone electrophoresis-electrospray mass spectrometry, J. Chromatogr. A. 779 (1997) 195-203.CrossRefPubMedGoogle Scholar
  35. 35.
    A.D. Zamfir, L. Bîndila, N. Lion, M. Allen, H.H. Girault, J. Peter-Kataliniü, Chip electro- spray mass spectrometry for carbohydrate analysis, Electrophoresis 26 (2005) 3650-3673.CrossRefPubMedGoogle Scholar
  36. 36.
    A.D. Zamfir, Z. Vukeliü, L. Bîndila, J. Peter-Kataliniü, R. Almeida, A. Sterling, M. Allen, Fully-automated chip-based nanoelectrospray tandem mass spectrometry of gangliosides from human cerebellum, J. Am. Soc. Mass Spectrom. 15 (2004) 1649-1657.CrossRefPubMedGoogle Scholar
  37. 37.
    A.D. Zamfir, Z. Vukeliü, A. Schneider, E. Sisu, N. Dinca, A. Ingendoh, A novel approach for ganglioside structural analysis based on electrospray multiple-stage mass spectrometry, J. Biomol. Tech. 18 (2007) 188-193.PubMedGoogle Scholar
  38. 38.
    C. Stoll, Y. Alembik, B. Dott, Associated malformations in cases with neural tube defects, Genet. Couns. 18 (2007) 209-215.PubMedGoogle Scholar
  39. 39.
    Z. Vukeliü, W. Metelmann, J. Müthing, M. Kos, J. Peter-Kataliniü, Anencephaly: structural characterization of gangliosides in defined brain regions, Biol. Chem. 382 (2001) 259-274.CrossRefGoogle Scholar
  40. 40.
    B. Domon, C.E. Costello, A systematic nomenclature for carbohydrate fragmentations in FAB-MS spectra of glycoconjugates, Glycoconjugate J. 5 (1988) 397-409.CrossRefGoogle Scholar
  41. 41.
    C.E. Costello, P. Juhasz, H. Perreault, New mass-spectral approaches to gangliosides structure determination, Progr. Brain Res. 101 (1994) 45-61.CrossRefGoogle Scholar
  42. 42.
    L. Svennerholm, Ganglioside designation, Adv. Exptl. Med. Biol. 125 (1980) 125-211.Google Scholar
  43. 43.
    IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCNB). Eur. J. Biochem. (1998) 257-293Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Cristina Mosoarca
    • 1
  • Z̆eljka Vukelić
    • 2
  • Alina D. Zamfir
    • 1
    • 3
  1. 1.Mass Spectrometry LaboratoryNational Institute for Research and Development in Electrochemistry and Condensed MatterTimisoaraRomania
  2. 2.Department of Chemistry and Biochemistry, Faculty of MedicineUniversity of ZagrebCroatia
  3. 3.“Aurel Vlaicu” University of AradRomania

Personalised recommendations