Advertisement

Relating fish kills to upwellings and wind patterns in the Salton Sea

  • B. Marti-Cardona
  • T. E. Steissberg
  • S. G. SchladowEmail author
  • S. J. Hook
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 201)

Abstract

In recent years, the extreme eutrophication of the Salton Sea has been associated with massive fish kills and associated bird kills. Analysis of the magnitude and direction of high wind events indicates that major fish kills are preceded by strong and persistent wind events, with a 24-h accumulated wind magnitude above a critical threshold of approximately 90 m/s. Twelve of the 14 cases of reported fish kills analyzed were found to be preceded by such wind conditions. The winds could potentially produce upwellings of hypolimnetic water at the upwind end of the Sea, resulting in the entire water column being low in dissolved oxygen and high in concentrations of hydrogen sulfide and ammonium. Remotely sensed thermal infrared data from the MODIS instrument on the Terra satellite was available for 5 of the 14 fish kills analyzed. Evaluation of satellite-derived surface temperature maps for these 5 fish kills shows that upwellings did take place after the wind events, affecting a large fraction of the Sea’s area. The location of the upwelling and the fish kills coincided in all cases, confirming the relationship among wind patterns, upwellings, and fish kills in the Salton Sea. The importance of physically mediated processes, such as upwellings, need to be considered in evaluating future remediation strategies for the Salton Sea.

Keywords

Infrared Remote sensing MODIS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowen, M. M., W. J. Emery, J. L. Wilkin, P. C. Tildesley., I. J. Barton & R. Knewtson, 2002. Extracting multiyear surface currents from sequential thermal imagery using the maximum cross-correlation technique. Journal of Atmospheric and Oceanic Technology 19(10): 1665–1676.CrossRefGoogle Scholar
  2. Brown, O. B. & P. J. Minnett, 1999. MODIS Infrared Sea Surface Temperature Algorithm: Algorithm Theoretical Basis Document, Version 2.0. University of Miani, NAS5-31361.Google Scholar
  3. Cook, C. B., G. T. Orlob & D. W. Huston, 2002. Simulation of wind-driven circulation in the Salton Sea: implications for indigenous ecosystems. Hydrobiologia 473: 59–75.CrossRefGoogle Scholar
  4. Farrow, D. E. & C. L. Stevens, 2003. Numerical modelling of a surface-stress driven density-stratified fluid. Journal of Engineering Mathematics 47: 1–16.CrossRefGoogle Scholar
  5. Holdren, G. C. & A. Montaño, 2002. Chemical and physical characteristics of the Salton Sea, California. Hydrobiologia 473: 1–21.CrossRefGoogle Scholar
  6. Hook, S. J., F. J. Prata, R. E. Alley, A. Abtahi, R. C. Richards, S. G. Schladow & S. O. Palmarsson, 2003. Retrieval of lake bulk and skin temperatures using along-track scanning radiometer (ATSR-2) data: a case study using Lake Tahoe, California. Journal of Atmospheric and Oceanic Technology 20: 534–548.CrossRefGoogle Scholar
  7. Hook, S. J., R. G. Vaughan, H. Tonooka & S. G. Schladow, 2007. Absolute radiometric in-flight validation of mid infrared and thermal infrared data from ASTER and MODIS on the Terra spacecraft using the Lake Tahoe, CA/NV, USA, automated validation site. IEEE Transactions Geoscience and Remote Sensing 45: 1798–1807.CrossRefGoogle Scholar
  8. Kuperman, B. I., V. E. Matey & S. H. Hurlbert, 2001. Parasites of fish from the Salton Sea, California, USA. Hydrobiologia 466: 195–208.CrossRefGoogle Scholar
  9. MacIntyre, S., 1993. Vertical mixing in a shallow, eutrophic lake: possible consequences for the light climate of phytoplankton. Limnology and Oceanography 38: 798–817.CrossRefGoogle Scholar
  10. MacIntyre, S., 1998. Turbulent mixing and resource supply to phytoplankton. In Imberger, J. (ed.), Physical Processes in Lakes and Oceans. American Geophysical Union, Washington DC: 561–590.Google Scholar
  11. MacIntyre, S. & R. Jellison, 2001. Nutrient fluxes from upwelling and enhanced turbulence at the top of the pycnocline in Mono Lake, California. Hydrobiologia 466: 13–29.CrossRefGoogle Scholar
  12. Mitch, W. J. & J. G. Gosselink, 2000. Wetlands. Van Nostrand Reinhold, New York.Google Scholar
  13. Monismith, S. G. 1985. Wind-forced motions in stratified lakes and their effect on mixed-layer shear. Limnology and Oceanography 30: 771–783.CrossRefGoogle Scholar
  14. Monismith, S. G., 1986. An experimental study of the upwelling response of stratified reservoirs to surface shear stress. Journal of Fluid Mechanics 171: 407–439.CrossRefGoogle Scholar
  15. Patten, M. A., G. McCaskie & P. Unitt, 2003. Birds of the Salton Sea. Status, Biogeography, and Ecology. University of California Press, Berkeley, California.Google Scholar
  16. Preisendorfer, R. W., 1988. Principal Component Analysis in Meteorology and Oceanography. Elsevier, New York.Google Scholar
  17. Reifel, K. M., M. P. McCoy, T. E. Rocke, M. A. Tiffany, S. H. Hurlbert & D. J. Faulkner, 2002. Possible importance of algal toxins in the Salton Sea, California. Hydrobiologia 473: 275–292.CrossRefGoogle Scholar
  18. Salomonson, V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery & H. Ostrow, 1989. MODIS: advanced facility instrument for studies of the earth as a system. IEEE Transactions on Geoscience and Remote Sensing 27: 145–153.CrossRefGoogle Scholar
  19. Shuford, W. D., N. Warnock, K. C. Molina & K. K. Sturm, 2002. The Salton Sea as critical habitat to migratory and resident waterbirds. In Barnum, D. A., J. F. Elder, D. Stephens & M. Friend (eds), The Salton Sea. Hydrobiologia 473: 255–274.Google Scholar
  20. Stevens, C. & J. Imberger, 1996. The initial response of a stratified lake to a surface shear stress. Journal of Fluid Mechanics 312: 39–66.CrossRefGoogle Scholar
  21. Tiffany, M. A., S. B. Barlow, V. E. Matey & S. H. Hurlbert, 2001. Chattonella marina (Raphidophyceae), a potentially toxic alga in the Salton Sea, California. Hydrobiologia 466: 187–194.CrossRefGoogle Scholar
  22. Watts, J. M., B. K. Swan, M. A. Tiffany & S. H. Hurlbert, 2001. Thermal, mixing, and oxygen regimes in the Salton Sea, California, 1997–1999. Hydrobiologia 466: 159–176.CrossRefGoogle Scholar
  23. Yamaguchi, Y., A. B. Kahle, H. Tsu, H. T. Kawakami & M. Pniel, 1998. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing 36: 1062–1071.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • B. Marti-Cardona
    • 1
  • T. E. Steissberg
    • 1
  • S. G. Schladow
    • 1
    Email author
  • S. J. Hook
    • 2
  1. 1.Department of Civil and Environmental EngineeringUniversity of California at DavisDavisUSA
  2. 2.Jet Propulsion LaboratoryCalifonia Institute of TechnologyPasadenaUSA

Personalised recommendations