Advertisement

Pollination Biology

Orchids Pollen Dispersal Units and Reproductive Consequences
  • Ettore Pacini

Male and female reproductive organs vary widely in angiosperms, due to the number of ovules per ovary and the number of pollen grains in pollen dispersal units (PDUs), a term used to indicate the different ways in which ripe pollen is presented for dispersal (Pacini, 1997). Pollen may travel as a single grain, or en masse, as a compound pollen (Knox and McConchie, 1986).

Pollen forms aggregates by various means: (i) viscous fluids derived from tapetum activity and/or degeneration; (ii) filaments derived from tapetum activity, composed of sporopollenin and continuous with pollen exine; (iii) threads derived from other anther parts; (iv) common walls, i.e., contiguous pollen grains derived from the same meiocyte or from close meiocytes which share a wall (Pacini and Franchi, 1999; Hesse, Vogel, and Halbritter 2000).

Keywords

Pollen Tube Pollen Development Reproductive Consequence Tapetal Cell Pollen Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ackerman, J. D., and N. H. Williams. 1980. Pollen morphology of the tribe Neottieae and its impact on the classification of the Orchidaceae. Grana 19. 7–18.Google Scholar
  2. Ackerman, J. D., and N. H. Williams. 1981. Pollen morphology of the Chloraeinae (Orchidaceae. Diuridae) and related subtribes. Am. J. Bot. 68. 1392–1402.Google Scholar
  3. Beattie, A. J., C. Turnbull, T. Hough, S. Jobson, and R. B. Knox. 1985. The vulnerability of pollen and fungal spores to ant secretion. Evidence and some evolutionary implications. Am. J. Bot. 72. 606–614.Google Scholar
  4. Borba, E. L., and J. Semir. 1999a. Wind-assisted fly pollination in three Bulbophyllum (Orchidaceae) species occurring in the brazilian campos rupestes. Lindleyana 13. 203–21.Google Scholar
  5. Borba, E. L., and J. Semir. 1999b. Temporal variation in pollinarium size after its removal in species of Bulbophyllum: a different mechanism preventing self-pollination in Orchidaceae. Plant Syst. Evol. 217. 197–204.Google Scholar
  6. Brantjes, N. B. M. 1981. Ant, bee and fly pollination in Epipactis palustris (L.) Crantz (Orchidaceae). Acta Bot. Neerl. 30. 59–68.Google Scholar
  7. Brown, R. C., and B. E. Lemmon. 1991. Pollen development in orchids. 1. Cytoskeleton and control of division plane in irregular patterns of cytokinesis. Protoplasma 163. 9–18.Google Scholar
  8. Buchner, R., and M. Weber. 2000. PalData a palynological database. descriptions, illustrations, identification and information retrieval. http.//PALDAT.BOTANIK.UNIVIE.AC.AT/Google Scholar
  9. Burns-Balogh, P. 1983. A theory on the evolution of the exine in Orchidaceae. Am. J. Bot. 70. 1304–1312.Google Scholar
  10. Burns-Balogh, P., and M. Hesse. 1988. Pollen morphology of the cypripedioid orchids. Plant Syst. Evol. 158. 165–182.Google Scholar
  11. Catling, P. M. 1990. Auto-pollination in the Orchidaceae. In: J. Arditti (ed.), Orchid biology. reviews and perspectives, Vol V. Comstock Publishing Associates, Ithaca, N Y, pp. 121–157.Google Scholar
  12. Clifford, S. C., and S. J. Owens. 1990. The stigma, style and ovarian transmitting tract in the Oncidiinae (Orchidaceae). morphology, developmental anatomy and histochemistry. Bot. Gaz. 151. 440–451.Google Scholar
  13. Cocucci, A., and W. Jensen. 1969. Orchid Embryology. Pollen tetrads of Epidendrum scutella in the anther and on the stigma. Planta 84. 215–229.Google Scholar
  14. Cruden, R. W. 1977. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31. 32–47.Google Scholar
  15. Currier, H. B., and S. Strugger. 1956. Aniline blue and fluorescence microscopy of callose in bulb scales of Allium cepa L. Protoplasma 45. 552–559.Google Scholar
  16. Dafni, A. 1987. Pollination of Orchids and related genera. evolution from reward to deception. In: J. Arditti (ed.), Orchid biology: reviews and perspectives, Vol I V. Comstock Publishing Associates, Ithaca, N Y, pp. 79–104.Google Scholar
  17. Dafni, A., and D. Firmage. 2000. Pollen viability and longevity. practical, ecological and evolutionary implications. Plant Syst. Evol. 222. 113–132.Google Scholar
  18. Dannenbaum, C., and R. Schill. 1991. Die Entwicklung der Pollentetraden und Pollinien bei den Asclepiadaceae. Biblioteca Botanica 34. 1–138.Google Scholar
  19. Dannenbaum, C., M. Walter, and R. Schill. 1989. Stigma morphology of the orchids. Bot. Jahrb. Syst. 110. 441–460.Google Scholar
  20. Darlington, C. D., and L. F. La Cour. 1960. The handling of chromosomes (3rd revised ed.). George Allen & Unwin, London.Google Scholar
  21. Davies, K. L., M. P. Turner, and A. Gregg. 2003. Atypical pseudopollen-forming hairs in Maxillaria (Orchidaceae). Bot. J. Linn. Soc. 43. 151–158.Google Scholar
  22. Davies, K. L., M. P. Turner, and A. Gregg. 2003. Atypical pseudopollen-forming hairs in Maxillaria (Orchidaceae). Bot. J. Linn. Soc. 43. 151–158.Google Scholar
  23. Davis, G. L. 1966. Systematic embryology of the angiosperms. Wiley, London.Google Scholar
  24. Dressler, R. L. 1981. The orchids. Natural history and classification. Harward University Press, Cambridge, MA.Google Scholar
  25. Faegri, K., and J. Iversen. 1989. Textbook of pollen analysis (4th ed.). K. Faegri, P. E. Kaland, and K. Krzyrinski (eds.), Wiley, Chichester, UK.Google Scholar
  26. Faegri, K., and L. van der Pijl. 1979. The principles of pollination ecology (3rd ed.). Pergamon, Oxford.Google Scholar
  27. Fisher, D. 1968. Protein staining of ribboned epon sections for light microscopy. Histochemie 16. 92–96.PubMedGoogle Scholar
  28. Fitzgeral, M. A., S. H. Barnes, S. Blackmore, D. M. Calder, and R. B. Knox. 1994. Pollen development and cohesion in a mealy and hard type of orchid pollinium. Int. J. Plant Sci. 155. 481–491.Google Scholar
  29. Flax, M., and M. Himes. 1952. Microspectrophotometric analysis of metachromatic staining of nucleic acids. Physiol. Zool. 25. 297–311.Google Scholar
  30. Footitt, S., and M. A. Cohn. 2001. Developmental arrest. from sea urchin to seeds. Seed Sci. Res. 11. 3–16.Google Scholar
  31. Franchi, G. G., L. Bellani, M. Nepi, and E. Pacini. 1996. Types of carbohydrate reserves in pollen. localization, systematic distribution and ecophysiological significance. Flora 191. 143–159.Google Scholar
  32. Franchi, G. G., M. Nepi, and E. Pacini. 2002. Partially hydrated pollen. taxonomic distribution and evolutionary significance. Plant Syst. Evol. 234. 211–227.Google Scholar
  33. Freudestein, J. V. 1991. A systematic study of endothecial thickenings in the Orchidaceae. Am. J. Bot. 78. 766–781.Google Scholar
  34. Freudestein, J. V., and F. N. Rasmussen. 1997. Sectile pollinia and relationships in the Orchidaceae. Plant Syst. Evol. 205. 125–146.Google Scholar
  35. Gerlach, G., and R. Schill. 1991. Composition of orchid scents attracting euglossine bees. Bot. Acta 104. 379–391.Google Scholar
  36. Goff, L. J. A., and A. W. Coleman. 1984. Elucidation of fertilization and development in a red alga by quantitative DNA microspectro-fluometry. Dev. Biol. 102. 1023–1024.Google Scholar
  37. Gregg, K. B. 1991. Reproductive strategy of Cleistes divaricata (Orchidaceae). Am. J. Bot. 78. 350–360.Google Scholar
  38. Harris, F. C. L., and A. J. Beattie. 1991 Viability of pollen carried by Apis mellifera L., Trigena carbonaria Smith and Vespula germanica (F.) Hymenoptera. Apidae, Vespidae. J. Aust. Ent. Soc. 30. 45–47.Google Scholar
  39. Heslop-Harrison, J. 1968. Synchronous pollen mitosis and the formation of the generative cell in massulate orchids. J. Cell Sci. 3. 457–466.Google Scholar
  40. Heslop-Harrison, J. and Y. Heslop-Harrison. 1985. Germination of stress-tolerant Eucaliptus pollen. J. Cell Sci. 73. 135–157.Google Scholar
  41. Heslop-Harrison, J., R. B. Knox, and Y. Heslop-Harrison. 1974. Pollen wall proteins: exine held fractions associated with the incompatibility response in Cruciferae. Theor. Appl. Gen. 44. 133–137.Google Scholar
  42. Heslop-Harrison, J., Y. Heslop-Harrison, and K. R. Shivanna. 1984. The evaluation of pollen quality and a further appraisal of the fluorocromatic (FCR) test procedure. Theor. Appl. Gen. 67. 367–375.Google Scholar
  43. Heslop-Harrison, Y. 1977. The pollen-stigma interaction. pollen tube penetration in Crocus. Ann. Bot. 41. 913–922.Google Scholar
  44. Hesse, M., S. Vogel, and H.-M. Halbritter. 2000. Thread-forming structures in angiosperm anthers: their diverse role in pollination ecology. Plant Syst. Evol. 222. 281–292.Google Scholar
  45. Hofmeister, W. 1861. Neue Beiträge zur Kenntnis der Embryobildung der Phanerogamen. II Monokotiledonen. Königlich sächsische Gesellschaft der Wissenschaften, Leipzig, Abhandlungen 7. 631–760.Google Scholar
  46. Jensen, W. A. 1962. Botanical histochemistry: principles and practice. W. H. Freeman, San Francisco.Google Scholar
  47. Johansen, D. A. 1940. Plant microtechnique. McGraw-Hill, New York.Google Scholar
  48. Johnson, S. D., and T. J. Edwards. 2000. The structure and function of orchid pollinaria. Plant Syst. Evol. 222. 243–269.Google Scholar
  49. Knox, R. B., and C. A. McConchie. 1986. Structure and function of compound pollen. In: Blackmore S., and I. K Ferguson (eds.), Pollen and spores: form and function. Linnaean Society Symposium Series 12, Academic, London, pp. 265–282.Google Scholar
  50. Kocyan, A., and P. K. Endress. 2001. Floral structure and development of Apostasia and Neuwiedia (Apostasioideae) and their relationships to other Orchidaceae. Intern. J. Plant Sci. 162. 847–867.Google Scholar
  51. Le Pecq, J. B., and C. Paletti. 1967. A fluorescent complex between ethidium bromide and nuclei acids. Physical-chemical characterization. J. Mol. Biol. 27. 87–106.PubMedGoogle Scholar
  52. Mazia, D., P. Brewer, and M. Alfer. 1953. The cytochemical staining and measurement with mercuric bromophenol blue. Biol. Bull. 104. 527–540.Google Scholar
  53. Moore, P. D., J. A. Webb, M. E. Collison. 1991. Pollen analysis (2nd ed.). Blackwell, Oxford.Google Scholar
  54. Nepi, M., and G. G. Franchi. 2000. Cytochemistry of mature pollen. Plant Syst. Evol. 222. 45–62.Google Scholar
  55. Nepi, M., G. G. Franchi, E. Pacini. 2001. Pollen hydration status at dispersal. cytophysiological features and strategies. Protoplasma 216. 171–180.PubMedGoogle Scholar
  56. Newton, G. D., and N. H. Williams. 1978. Pollen morphology of the Cypripedioideae and the Apostasioideae (Orchidaceae). Selbiana 2. 169–182.Google Scholar
  57. Nilsson, L. A. 1992. Orchid pollination biology. Trends Ecol. Evol. 7. 255–259.Google Scholar
  58. O'Brien, T. P. N., N. Federn, and M. E. McCully. 1964. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59. 368–373.Google Scholar
  59. O'Brien, T. P. N., and M. E. McCully. 1981. The study of plant structure - principles and selected methods. Termarcarphy Pty. Melbourne.Google Scholar
  60. Ottaviano, E., and D. Mulcahy. 1989. Genetics of angiosperm pollen. Adv. Genet. 26. 1–64.Google Scholar
  61. Pacini, E. 1990. Harmomegathic characters of Pteridophyta spores and Spermatophyta pollen. In: M. Hesse, and F. Ehrendorfer (eds.), Morphology, development and and systematic relevance of pollen and spores. Plant Syst. Evol. (Suppl. 5). 53–69.Google Scholar
  62. Pacini, E. 1994. Cell biology of anther and pollen development. In: E. G. Williams, A. E. Clarke, and R. B. Knox (eds.), Genetic control of self-incompatibility and reproductive development in flowering plants. Kluwer, Dordrecht, The Netherlands, pp. 289–308.Google Scholar
  63. Pacini, E. 1996. Types and meaning of pollen carbohydrate reserves. Sex. Plant Reprod. 9. 362–366.Google Scholar
  64. Pacini, E. 1997. Tapetum character states: analytical keys for tapetum types and activity. Can. J. Bot. 75. 1488–1459.Google Scholar
  65. Pacini, E. 2000. From anther and pollen ripening to pollen presentation. Plant Syst. Evol. 222. 19–43.Google Scholar
  66. Pacini, E. and G. G. Franchi. 1999. Some cytological, ecological and evolutionary aspects of pollination. Acta Soc. Bot. Pol. 65: 11–16.Google Scholar
  67. Pacini, E., and G. G. Franchi. 1999. Types of pollen dispersal units and pollen competition. In: C. Clément, E. Pacini, and J.-C. Audran (eds.), Anther and pollen: from biology to biotechnology. Springer Verlag, Berlin, pp. 13–20.Google Scholar
  68. Pacini, E., and G. G., Franchi. 2000. Types of pollen dispersal units in Monocots. In: K. L. Wilson, and D. A. Morrison (eds.), Monocots, systematics and evolution. CSIRO, Melbourne, pp. 295–300.Google Scholar
  69. Pacini, E., and M. Hesse. 2002. Types of pollen dispersal units in orchids. and their consequences for germination and fertilization. Ann. Bot. 89. 653–664.PubMedGoogle Scholar
  70. Pacini, E., and M. Hesse. 2004. Cytophysiology of pollen presentation and dispersal. Flora 199. 273–285.Google Scholar
  71. Pacini, E., G. G. Franchi, and M. Hesse. 1985. The tapetum: its form, function and possible phylogeny in embryophyta. Plant Syst. Evol. 149. 155–185.Google Scholar
  72. Pandolfi, T., and E. Pacini. 1995. The pollinium of Loroglossum ircinum (L.) Rich. (Orchidaceae) between pollination and pollen tube emission. Plant Syst. Evol. 196. 141–151.Google Scholar
  73. Pandolfi, T., E. Pacini, and D. M. Calder. 1993. Ontogenesis of monad pollen in Pterostylis piumosa (Orchidaceae Neottioideae) Plant Syst. Evol. 186. 175–185.Google Scholar
  74. Pearse, A. G. 1985. Histochemistry, theoretical and applied, Vo l 2. Analytical technology (4th ed.). Churchill Livingstone, Edinburgh.Google Scholar
  75. Pecall, R. 1989. The unique pollination of Leporella fimbriata (Orchidaceae). pollination by pseu-docopulating male ants (Myrmecia urens, Formicidae). Plant Syst. Evol. 167. 137–148.Google Scholar
  76. Proctor, H. C., and L. D. Harder. 1994. Pollen load, capsule weight, and seed production in three orchid species. Can. J. Bot. 72. 294–255.Google Scholar
  77. Proctor, H. C., and L. D. Harder. 1995. Effect of pollination success on floral longevity in the orchid Calypso bulbosa (Orchidaceae). Am. J. Bot. 82. 1131–1136.Google Scholar
  78. Punt, W., S. Blackmore, S. Nilsson, and A. Le Thomas. 1994. Glossary of pollen and spore terminology. LPP Foundation, Utrect, Contribution series No 1.Google Scholar
  79. Reagan, S., and W. N. Moffat. 1990. Cytochemical analysis of pollen development in wild-type Arabidopsis and male-sterile mutant. Plant Cell 2. 877–889.Google Scholar
  80. Reichenbach, H. G. 1852. De pollinis orchidacearum genesi ac structura. Leipzig.Google Scholar
  81. Schill, R., and W. Pfeiffer. 1977. Untersuchungen an Orchideenollinien unter besonderer Berücksichtigung ihrer Feinskulpturen. Pollen et Spores 19. 5–18.Google Scholar
  82. Schill, R., and M. Wolter. 1985. Ontogeny of elastoviscin in the Orchidaceae. Nord. J. Bot. 5. 575–580.Google Scholar
  83. Schill, R., and M. Wolter. 1986. On the presence of the elastoviscin in all subfamilies of the Orchidaceae and the homology to pollenkitt. Nord. J. Bot. 6. 321–324.Google Scholar
  84. Schill, R., C. Dunnenbaum, P. Neyer. 1992. Quantitative Untersuchungen an Orchideenpollinien. Bot. Jahr. Syst. Phlanzengeschichte und Planzengeographie 114. 153–171.Google Scholar
  85. Schlag, M., and M. Hesse. 1993. Morphogenesis of the sporoderm in Polystachia pubescens (Orchidaceae). Grana 32. 22–28.Google Scholar
  86. Schlag, M., and M. Hesse. 1992. The formation of the generative cell in Polystachia pubescens (Orchidaceae). Sex. Plant Reprod. 5. 131–137.Google Scholar
  87. Singer, R. B. 2002. The pollination mechanism in Trigonium obtusum Lindl (Orchidaceae. Maxillariinae) Sexual mimicry and trap-flowers. Ann. Bot. 89. 157–163.PubMedGoogle Scholar
  88. Sears, B. B. 1980. Elimination of plastids during spermatogenesis and fertilization in the plant kingdom. Plasmid 4. 233–255.PubMedGoogle Scholar
  89. Speranza, A., G. L. Calzoni, E. Pacini. 1997. Occurrence of mono or disaccharides and polysac-charides reserves in mature pollen grains. Sex. Plant Reprod. 10. 110–115.Google Scholar
  90. Steiner, K. E. 1998. The evolution of beetle pollination in a South African orchid. Am. J. Bot. 85. 1180–1193.Google Scholar
  91. Stenzel, H. 2000. Pollen morphology of the subtribe Pleurothallinae Lindl. (Orchidaceae). Grana 39 108–125.Google Scholar
  92. Takhtajan, A. I. 1976. Neoteny and the origin of flowering plants. In: C. B. Back (ed.), Origin and early evolution of angiosperms. Columbia University Press, New York, pp. 207–219.Google Scholar
  93. Tanaka, I. 1993. Development of male gametes in flowering plants. J. Plant. Res. 106. 55–63.Google Scholar
  94. Williams, N. H. 1970. Some observations on pollinaria in the Oncidinae. Am. Orchid Soc. Bull. 39. 32–43, 207–220.Google Scholar
  95. Williams, N. H. 1972. Additional studies on pollinaria in the Oncidinae. Am. Orchid Soc. Bull. 41. 222–230.Google Scholar
  96. Williams, N. H., and C. R. Broome. 1976. Scanning electron microscope studies of orchid pollen. Am. Orchid Soc. Bull. 45. 699–707.Google Scholar
  97. Wolter, M., and R. Schill. 1985a. On acetolysis resistant structure in the orchidaceae (why fossil record of orchid pollen is so rare. Grana 24. 139–143.Google Scholar
  98. Wolter, M., and R. Schill. 1985b. Ontogeny of the elastoviscin in the Orchidaceae. Nord. J. Bot. 5. 575–580.Google Scholar
  99. Wolter, M., and R. Schill. 1986. Ontogenie von pollen, massulae und pollinien bei den orchideen. Tropische und subtropische Phlanzenwelt 56. 1–93.Google Scholar
  100. Wolter, M., C. Seufertet, and R. Schill. 1988. The ontogeny of pollinia and elastoviscin in the anther of Doritis pulcherrima (Orchidaceae). Nord. J. Bot. 8. 77–88.Google Scholar
  101. Yeung, E. C. 1987a. Development of pollen and accessory structures in orchids. In: J. Arditti (ed.), Orchid biology: reviews and perspectives, Vo l IV. Comstock Publishing Associates, Ithaca, NY, pp. 197–225.Google Scholar
  102. Yeung, E. C. 1987b. Mechanisms of pollen aggregation into pollinia in Epidendrum ibaguense. H. B. K. (Orchidaceae). Grana 26. 47–52.Google Scholar
  103. Yeung, E. C. 1987c. The development and structure of the viscidium in Epidendrum ibaguense H.B.K. (Orchidaceae). Bot. Gaz. 148. 149–155.Google Scholar
  104. Zavada, M. S. 1983. Comparative morphology of monocot pollen and evolutive trends of aperture and wall structure. Bot. Rev. 49. 331–379.Google Scholar
  105. Zavada, M. S. 1990. A contribute to the study of pollen wall ultrastructure of orchid pollinia. Ann. Missouri Bot. Gard. 77. 785–801.Google Scholar
  106. Zee, S. Y., and I. H. P. Siu. 1990. Studies on the ontogeny of the pollinium of a massulate orchid (Peristylium spiranthes). Rev. Palaebot. Palynol. 64. 159–164.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Ettore Pacini

There are no affiliations available

Personalised recommendations