Advertisement

Nitride Semiconductors Investigated at a Nanoscale

  • Mohammed Benaissa
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The present review deals with two important issues that inhibited a rapid development of III-nitrides devices. Namely; p-type doping of GaN and GaN quantum dots on dislocations free surfaces. The first issue was governed by an auto-compensation phenomenon that limited high p-type doping, while the second was affected by threading dislocations that would act as trap centers for carriers preventing an efficient electrical injection. In both cases, the overall electronic behavior is essentially governed both by the intrinsic structure, strain-state and chemistry of these nanoscopic objects, in addition to the nature of interfaces therein. Transmission electron microscopy (TEM) was extensively used to provide local atomic imaging, electron diffraction and spectroscopy with high spatial-resolution and energy-resolution offering therefore numerous possibilities for locally investigating and characterizing the electronic, optical, chemical, and structural properties. This review starts with a brief introduction to basic properties of III-nitride semiconductors, with a description of growth techniques used for the elaboration of studied samples and followed by a recall of electron microscopy and its associated techniques. Particular attention is then paid to detailed investigations regarding p-type doped GaN samples grown with metalorganic vapor phase deposition and GaN QDs grown using molecular beam epitaxy. These results are presented in two separate chapters. A conclusion summarizing main points and a look towards the future is made at the end.

Keywords

III-nitrides GaN p-type quantum dots epitaxy HRTEM EELS dislocation strain-state nano-analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.I. Pankove, E.A. Miller, and J.E. Berkeyhauser. RCA Rev., 32, 383 (1971)Google Scholar
  2. 2.
    R. Dingle, K.L. Shaklee, R.F. Leheny, and R.B. Zetterst. Appl. Phys. Lett., 19(1), 5 (1971)CrossRefADSGoogle Scholar
  3. 3.
    S. Yoshida, S. Misawa, and S. Gonida. Appl. Phys. Lett., 42(5), 427 (1983)CrossRefADSGoogle Scholar
  4. 4.
    H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda. Appl. Phys. Lett., 48(5), 353 (1986)CrossRefADSGoogle Scholar
  5. 5.
    H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki. Jpn. J. Appl. Phys., 28, 2112 (1989)CrossRefADSGoogle Scholar
  6. 6.
    S. Nakamura and T. Mukai. Jpn. J. Appl. Phys., 31, 1457 (1992)CrossRefADSGoogle Scholar
  7. 7.
    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai. Appl. Phys. Lett., 76, 22 (2000)CrossRefADSGoogle Scholar
  8. 8.
    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto. Jpn. J. Appl. Phys., 35, 74 (1996)CrossRefADSGoogle Scholar
  9. 9.
    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto. Appl. Phys. Lett., 69, 4056 (1996)CrossRefADSGoogle Scholar
  10. 10.
    S. Nakamura and G. Fosol. The Blue Laser Diode. Springer, Berlin (1997)Google Scholar
  11. 11.
    S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama. Jpn. J. Appl. Phys., 34, 1332 (1995)CrossRefADSGoogle Scholar
  12. 12.
    H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns. J. Appl. Phys., 76, 1363 (1994)CrossRefADSGoogle Scholar
  13. 13.
    J.L. Rouviere, J.L. Weyher, M. Seelmann-Eggebert, and S. Porowski. Appl. Phys. Lett., 73(5), 668 (1998)CrossRefADSGoogle Scholar
  14. 14.
    S. Porowski. J. Cryst. Growth, 189-190, 153 (1998)CrossRefADSGoogle Scholar
  15. 15.
    A.N. Efimov, A.O. Lebedev, and A.M. Tsaregorodtsev. J. Appl. Cryst., 31, 461 (1998)CrossRefGoogle Scholar
  16. 16.
    B. Beaumont, P. Gibart, N. Grandjean, and J. Massies. Comptes Rendus de l’Académie des Sciences - Series IV - Physics, 1, 35 (2000)CrossRefADSGoogle Scholar
  17. 17.
    B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux. Appl. Phys. Lett., 75, 962 (1999)CrossRefADSGoogle Scholar
  18. 18.
    J.P. Hirth and J. Lothe. Theory of Dislocations. MacGraw-Hill, New York (1968)Google Scholar
  19. 19.
    P.A. Stadelmann. Ultramicroscopy, 21, 131 (1987)CrossRefGoogle Scholar
  20. 20.
    J.L. Rouviere, P. Bayle-Guillemaud, G. Radtke, S. Groh, and O. Briot. Inst. Phys. Conf. Ser., 169, 17 (2001)Google Scholar
  21. 21.
    M.J. Hÿtch, E. Snoeck, and R. Kilaas. Ultramicroscopy, 74, 131 (1998)CrossRefGoogle Scholar
  22. 22.
    W. Götz, N.M. Johnson, J. Walker, D.P. Bour, and R.A. Street. Appl. Phys. Lett. 68, 667 (1996)CrossRefADSGoogle Scholar
  23. 23.
    U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier. Phys. Rev. B 62, 10 867 (2000)Google Scholar
  24. 24.
    L.T. Romano, M. Kneissi, J.E. Northrup, C.G. Van de Walle, and D.W. Treat. Appl. Phys. Lett. 79, 2734 (2001)CrossRefADSGoogle Scholar
  25. 25.
    M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart. J. Appl. Phys. 86, 3721 (1999)CrossRefADSGoogle Scholar
  26. 26.
    E. Oh, H. Park, and Y. Park. Appl. Phys. Lett. 72, 70 (1998)CrossRefADSGoogle Scholar
  27. 27.
    M. Smith, G.D. Chen, J.Y. Lin, H.X. Jiang, A. Salvador, B.N. Sverdlov, A. Botchkarev, H. Morkoc, and B. Goldenberg. Appl. Phys. Lett. 68, 1883 (1996)CrossRefADSGoogle Scholar
  28. 28.
    U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, and P. Schlotter, Appl. Phys. Lett. 72, 1326 (1998)CrossRefADSGoogle Scholar
  29. 29.
    P. Vennéguès, M. Benaissa, B. Beaumont, E. Feltin, P. De Mierry, S. Dalmasso, M. Leroux, and P. Gibart. Appl. Phys. Lett. 77, 880 (2000)CrossRefADSGoogle Scholar
  30. 30.
    R.F. Egerton. Electron Energy Loss Spectroscopy in the Electron Microscope, Plenum, New York, 1989Google Scholar
  31. 31.
    P. Vennéguès, M. Leroux, S. Dalmasso, M. Benaissa, P. De Mierry, P. Lorenzini, B. Damilano, B. Beaumont, J. Massies, and P. Gibart. Phys. Rev. B 68, 235214 (2003)CrossRefADSGoogle Scholar
  32. 32.
    N. Grandjean, A. Dussaigne, S. Pezzagna, and P. Vennéguès. J. Cryst. Growth 251, 460 (2003)CrossRefADSGoogle Scholar
  33. 33.
    Q. Sun, A. Selloni, T.H. Myers, and W. Alan Doolittle. Phys. Rev. B 73, 155337 (2006)CrossRefADSGoogle Scholar
  34. 34.
    M. Benaissa, P. Vennéguès, B. Beaumont, and P. Gibart, W. Saikaly and A. Charai. Appl. Phys. Lett., 77, 2115 (2000)CrossRefADSGoogle Scholar
  35. 35.
    M. Inokuti. Rev. Mod. Phys. 43, 297 (1971)CrossRefADSGoogle Scholar
  36. 36.
    W.R.L. Lambrecht, S.N. Rashkeev, B. Segall, K. Lawniczak-Jablonska, T. Suski, E.M. Gullikson, J.H. Underwood, R.C.C. Perera, J.C. Rife, I. Grzegory, S. Porowski, and D.K. Wickenden. Phys. Rev. B 55, 2612 (1997)CrossRefADSGoogle Scholar
  37. 37.
    M. Leroux, P. Vennéguès, S. Dalmasso, M. Benaissa, E. Feltin, P. de Mierry, B. Beaumont, B. Damilano, N. Grandjean, and P. Gibart. Phys. Stat. Sol. (a) 192, 394 (2002)CrossRefGoogle Scholar
  38. 38.
    J.E. Northrup. Appl. Phys. Lett. 82, 2278 (2003)CrossRefADSGoogle Scholar
  39. 39.
    J.F. Kaeding, H. Asamizu, H. Sato, M. Iza, T.E. Mates, S.P. DenBaars, J.S. Speck, and S. Nakamura. Appl. Phys. Lett. 89, 202104 (2006)CrossRefADSGoogle Scholar
  40. 40.
    C. Simbrunner, M. Wegscheider, M. Quast, T. Li, A. Navarro-Quezada, H. Sitter, A. Bonanni, and R. Jakiela. Appl. Phys. Lett. 90, 142108 (2007)CrossRefADSGoogle Scholar
  41. 41.
    P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu. Science 290, 2282 (2000); J.N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht. Phys. Rev. Lett. 95, 017402 (2005)Google Scholar
  42. 42.
    B. Daudin, F. Widmann, G. Feuillet, Y. Samson, M. Arlery, and J.L. Rouvière. Phys. Rev. B 56, R7069 (1997)CrossRefADSGoogle Scholar
  43. 43.
    K. Tachibana, T. Someya, and Y. Arakawa. Appl. Phys. Lett. 75, 2605 (1999)CrossRefADSGoogle Scholar
  44. 44.
    K. Hoshino, S. Kako, and Y. Arakawa. Appl. Phys. Lett. 85, 1262 (2004)CrossRefADSGoogle Scholar
  45. 45.
    S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, and F. Rossi. Phys. Rev. B 65, 081309 (R) (2002)CrossRefADSGoogle Scholar
  46. 46.
    J.L. Rouvière, J. Simon, N. Pelekanos, B. Daudin, and G. Feuillet. Appl. Phys. Lett. 75, 2632 (1999)CrossRefADSGoogle Scholar
  47. 47.
    F. Semond, Y. Cordier, N. Grandjean, F. Natali, B. Damilano, S. Vézian, and J. Massies. Phys. Stat. Sol. (a) 188, 501 (2001)CrossRefADSGoogle Scholar
  48. 48.
    M. Benaissa, P. Vennéguès, O. Tottereau, L. Nguyen, and F. Semond. Appl. Phys. Lett. 89, 231903 (2006)CrossRefADSGoogle Scholar
  49. 49.
    J. Tersoff, Y.H. Phang, Z. Zhang, and M.G. Lagally. Phys. Rev. Lett. 75, 2730 (1995); F. Liu, J. Tersoff, and M.G. Lagally. ibid. 80, 1268 (1998)Google Scholar
  50. 50.
    J.Y. Tsao. Materials Fundamentals of Molecular Beam Epitaxy. Academic, Boston, MA (1993). Chap. 6.Google Scholar
  51. 51.
    M.V. Ramana Murty, P. Fini, G.B. Stephenson, C. Thompson, J.A. Eastman, A. Munkholm, O. Auciello, R. Jothilingam, S.P. DenBaars, and J.S. Speck. Phys. Rev. B 62, R10661 (2000)CrossRefADSGoogle Scholar
  52. 52.
    J. Brault, S. Tanaka, E. Sarigiannidou, J.-L. Rouvière, B. Daudin, G. Feuillet, and H. Nakagawa. J. Appl. Phys. 93, 3108 (2003)CrossRefADSGoogle Scholar
  53. 53.
    X.Q. Shen, H. Okumura, and H. Matsuhata. Appl. Phys. Lett. 87, 101910 (2005)CrossRefADSGoogle Scholar
  54. 54.
    E. Sarigiannidou, E. Monroy, B. Daudin, J.L. Rouvière, and A.D. Andreev. Appl. Phys. Lett. 87, 203112 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Mohammed Benaissa
    • 1
  1. 1.Laboratoire de Réactivité et Chimie des SolidesMorocco

Personalised recommendations