Dielectric Anomalies and Relaxation Behavior in Hydrothermally Processed PLZT Ferroelectric Ceramics

  • Tajedine Lamcharfi
  • Nour-Said Echatoui
  • Salaheddine Sayouri
  • Daoud Mezzane
  • L. Hajji
  • Lahcen Elammari
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Pb1-yLay(Zr0.52Ti0.48)O3 (PLZTy) powders where y = 0, 0.015, 0.03, 0.06, 0.08, 0.10, 0.12, 0.15 and 0.20 were prepared using the hydrothermal process and their structural and dielectric properties investigated. Increasing La content is shown to enhance crystallization of the raw samples and to transform the average symmetry to tetragonal one in the calcined ones. Two anomalies are observed on the real part of the permittivity on both undoped and doped samples, at relatively high temperatures (~;180°C; ~;260°C). The anomaly located at about 180°C was interpreted as a transition from ferroelectric-rhombohedral phase to ferroelectric-quadratic phase. A polynomial law was used to fit the thermal behavior of the permittivity.

Keywords

Smart materials PLZT dielectric anomalies relaxation MPB 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mansingh, Ferroelectrics 102 (1990) 69-84.Google Scholar
  2. 2.
    A. M. Glass, Science 235 (1987) 1003-1009.CrossRefPubMedADSGoogle Scholar
  3. 3.
    G. Burns, B. A. Scott, Phys. Rev. B 7 (1973) 3088.CrossRefADSGoogle Scholar
  4. 4.
    S. J. Lee, K. Y. Kang, S. K. Han, M. S. Jang, B. G. Chae, Y. S. Yang, S. H. Kim, Appl. Phys. Lett. 72(3) (1998) 299-300.CrossRefADSGoogle Scholar
  5. 5.
    K. Iijima, Y. Tomita, R. Takayama, I. Veda, J. App. Phys. 60 (1986) 361.CrossRefADSGoogle Scholar
  6. 6.
    B. E. Vugmeister, H. Rabitz, Phys. Rev. B 57 (1998) 7581.CrossRefADSGoogle Scholar
  7. 7.
    A. E. Glazounov, A. K. Takantsev, A. J. Bell, Phys. Rev. B53 (1996) 11281.ADSGoogle Scholar
  8. 8.
    B. J. Helperin, C. M. Varma, Phys. Rev. B 14 (1976) 4030.CrossRefADSGoogle Scholar
  9. 9.
    W. Kleemann, Int. J. Mod. Phys. B7 (1993) 2469.ADSGoogle Scholar
  10. 10.
    R. Pirc, R. Blinc, Phys. Rev. B 60 (1999) 13470.CrossRefADSGoogle Scholar
  11. 11.
    R. Fisch, Phys. Rev. B 67 (2003) 094110.CrossRefADSGoogle Scholar
  12. 12.
    E. Prouzet, E. Husson, N. de Nathan, A. Morell, J. Phys.: Condens. Matter 5 (1993) 4889.CrossRefADSGoogle Scholar
  13. 13.
    G. A. Rossetti Jr., W. Cao, C. A. Randall, Ferroelectrics 158 (1994) 343.Google Scholar
  14. 14.
    L. A. Bursill, P. Julin, Q. Hua, N. Setter, Physica B 205 (1995) 305.CrossRefADSGoogle Scholar
  15. 15.
    J. Zhao, A. E. Glazounov, Q. M. Zhang, B. Toby, Appl. Phys. Lett. 72 (1998) 1048.CrossRefADSGoogle Scholar
  16. 16.
    S. Vakhrushev, A. Nabereznov, S. K. Sinha, Y. P. Feng, T. Egami, J. Phys. Chem. Solids 57 (1996) 1517.CrossRefADSGoogle Scholar
  17. 17.
    M. D. Glinchuk, V. V. Laguta, I. P. Bykov, S. Nokhrin, V. P. Bovtum, A. A. Leschenko, J. Rosa, L. Jastrabik, J. Appl. Phys. 81 (1997) 3561.CrossRefADSGoogle Scholar
  18. 18.
    G. A. Rossetti Jr., Ph.D. thesis, The Pennsylvania State University (1993).Google Scholar
  19. 19.
    J. F. Li, X. H. Dai, A. Chow, D. Viehland, J. Mater. Sci. 10 (1995) 926.Google Scholar
  20. 20.
    X. H. Dai, Z. Xu, D. Viehland, Philos. Mag. B 70 (1994) 33.CrossRefGoogle Scholar
  21. 21.
    K. G. Keiser, G. J. Lansink, A. J. Burgaaf, J. Phys. Chem. Solids 39 (1978) 59.CrossRefADSGoogle Scholar
  22. 22.
    J. F. Scott, C. A. Aranjo, Science 246, 1400 (1989).CrossRefPubMedADSGoogle Scholar
  23. 23.
    P. K. Larsen, R. Cuppens, G. A. C. M. Spiering, Ferroelectrics 128, 65 (1992)CrossRefGoogle Scholar
  24. 24.
    J. T. Evans, R. Womack, IEEE J. Solid State Circuits 23, 1171 (1988).CrossRefGoogle Scholar
  25. 25.
    B. Jaffe, W. R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971).Google Scholar
  26. 26.
    K. Kakegawa, O. Matoumaga, T. Kato, Y. Sasaki, J. Am. Ceram. Soc. 78, 1071 (1995).CrossRefGoogle Scholar
  27. 27.
    J. F. Meng, R. S. Katiyar, G. T. Zou, X. H. Wang, Phys. Stat. Sol. A 164, 851 (1997).CrossRefADSGoogle Scholar
  28. 28.
    G. A. Smolenskii, V. A. Bokov, V. A. Isupov, N. N. Krainik, R. E. Pasynkov, A. I. Sokolov, Ferroelectrics and Related Materials, p. 763 (Gordan and Breach, New York, 1984).Google Scholar
  29. 29.
    Thin Film Ferroelectric Materials and Devices, ed. by R. Ramesh (Kluwer, Boston, MA, 1997).Google Scholar
  30. 30.
    G. H. Haertling, Ceramic Materials for Electronics, ed. by Relva C. Buchman, New York, p. 139 (1986).Google Scholar
  31. 31.
    V. V. Kirillov, V. A. Isupov, Ferroelectrics 5, 3 (1973).Google Scholar
  32. 32.
    G. burns, F. Dacol, Phys. Rev. B 28 , 527 (1983).Google Scholar
  33. 33.
    L. E. Cross, Ferroelectrics 76, 241 (1987).Google Scholar
  34. 34.
    S. Li, J. A. Eastman, R. E. Newnham, L. E. Cross, Phys. Rev. B 55, 12067 (1997).CrossRefADSGoogle Scholar
  35. 35.
    D. Viehland, J. F. Li, S. J. Jang, L. E. Cross, M. Wuttig, Phys. Rev. B 43, 8316 (1991).CrossRefADSGoogle Scholar
  36. 36.
    S. K. Mishra, A. P. Singh, D. Pandey, Appl. Phys. Lett. 69, 1707 (1996).CrossRefADSGoogle Scholar
  37. 37.
    S. K. Mishra, D. Pandey, Philos. Mag. B 76, 227 (1997).CrossRefGoogle Scholar
  38. 38.
    Ragini, S. K. Mishra, D. Pandey, H. Lemmens, G. Van Tendeloo, Phys. Rev. B 64, 4101 (2001).ADSGoogle Scholar
  39. 39.
    B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, S. E. Park, L. E. Cross, Appl. Phys. Lett. 74, 2059 (1999).CrossRefADSGoogle Scholar
  40. 40.
    D. Sheen, J.-J. Kim, Phys. Rev. B 67, 144102 (2003).CrossRefADSGoogle Scholar
  41. 41.
    Y. Xu, Ferroelectric Materials and Their Applications, pp.101-210 (North Holland, Amsterdam, 1991).Google Scholar
  42. 42.
    P. Cousin, R. A. Cross, Mater. Sci. and Eng. A130, 119 (1990).CrossRefGoogle Scholar
  43. 43.
    W. J. Dawson, Am. Ceram. Soc. Bull. 67(10) 1673 (1988).Google Scholar
  44. 44.
    K. Uchino and S. Nomura, Critical Exponents of Dielectric Constant in Diffused-Phase Transition Crystals, Ferroelectric Lett., 44, 55-61 (1982).CrossRefGoogle Scholar
  45. 45.
    S. M. Gupta, J.-F. Li, D. Viehland, J. Am. Ceram. Soc. 81(5) 557 (1998).Google Scholar
  46. 46.
    B. Noheda, J. A. Gonzalo, L. E. Cross, R. Guo, S.6E. Park, D. E. Cox, G. Shirane, Phys. Rev. B 61(13) 8687 (2000).CrossRefADSGoogle Scholar
  47. 47.
    A. Bouzid, M. Gabbay, G. Fantozzi, Defects and Diffusion Forum, Vols. 206-207, pp. 147-150 (Trans Tech Publications, Switzerland, 2002).Google Scholar
  48. 48.
    A. Bouzid, Ph.D. thesis, INSA-Lyon (Fr.) (2002).Google Scholar
  49. 49.
    P. Gerthsen, K. H. Härdtl, N. A. Schmidt, J. Appl. Phys. 51(2) 1131 (1980).CrossRefADSGoogle Scholar
  50. 50.
    K. Bouayad, S. Sayouri, T. Lamcharfi, M. Ezzejari, D. Mezane, L. Hajji, A. Elghazouali, M. Filali, P. Dieudonné, M. Rhouta, Physica A 358, 75 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Tajedine Lamcharfi
    • 1
    • 2
  • Nour-Said Echatoui
    • 1
    • 2
  • Salaheddine Sayouri
    • 1
  • Daoud Mezzane
    • 3
  • L. Hajji
    • 3
  • Lahcen Elammari
    • 4
  1. 1.LPTA, Département de PhysiqueFaculté des Sciences-DMFès-AtlasMorocco
  2. 2.Département Génie ElectriqueFST, Route d'ImmouzerFèsMorocco
  3. 3.Faculté des Sciences et Techniques GuélizMarrakech
  4. 4.Département de ChimieFaculté des Sciences AgdalRabatMorocco

Personalised recommendations