Advertisement

Non-Symmetric Thermal Shock In Ceramic Matrix Composite (Cmc) Materials

  • Tomasz SadowskiEmail author
Part of the Solid Mechanics And Its Applications book series (SMIA, volume 154)

A methodology has been proposed to describe CMC and functionally graded materials (FGM) thermomechanical response subjected to sudden changes of the temperature field. Appropriate gradation of the composite properties can significantly improve thermal shock response of the material itself or a structural element. The governing equations for the temperature field under transient thermal loading are formulated, and solution of the analytical and two numerical methods FEA and FD were discussed. The role of the thermal residual stress is significant in the analysis of thermal shock problems. In a non-symmetrical gradation profile they create initial curvature of the FGM structural element. The basic fracture mechanics idea is presented and is applied to CMC and FGM which were subjected to a transient temperature field. In particular the crack-bridging mechanism plays an important role in the assessment of the composites response. Numerical examples dealing with 1-D and 2-D non-symmetric thermal shock problem illustrate the effectiveness of the theoretical methods to the solution of practical problems.

Keyword

composites non-symmetric thermal shock crack propagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aboudi, Mechanics of Composite Materials, Elsevier, Amsterdam, 1991zbMATHGoogle Scholar
  2. K.E. Aifantis, J.R. Willis, Mech. Mater., 2006, 38, 702–716CrossRefGoogle Scholar
  3. K.E. Aifantis, J.R. Willis, J. Mech. Phys. Solids, 2005, 53, 1047–70zbMATHMathSciNetCrossRefGoogle Scholar
  4. A. Atkinson, A. Selçuk, Acta Mater., 1999, 47, 867–74CrossRefGoogle Scholar
  5. T.L. Becker, R.M. Cannon, R.O. Ritchie, Mech. Mater., 2000, 32, 85–97CrossRefGoogle Scholar
  6. Y. Benveniste, Mech. Mater., 1987, 6, 147–157CrossRefGoogle Scholar
  7. T.J. Chung, A. Neubrand, J. Rödel, T. Fett, Ceram. Trans., 2001, 114, 789–96Google Scholar
  8. M. Dao, P. Gu, A. Maewal, J. Asaro, Acta Mater., 1997, 45, 3265–76CrossRefGoogle Scholar
  9. M. Dong, S. Schmauder, Acta Mater., 1996, 44, 2465–78CrossRefGoogle Scholar
  10. F. Erdogan, Com. Eng., 1995, 5, 753–70CrossRefGoogle Scholar
  11. F. Erdogan, B.H. Wu J. Therm. Stress, 1996, 19, 237–65CrossRefGoogle Scholar
  12. J.D. Eshelby, Proc. Roy. Soc.,1957, A 349, 376–96MathSciNetGoogle Scholar
  13. A. Evans, J. Am. Cer. Soc., 1990, 73, 187–206CrossRefGoogle Scholar
  14. Z. Fan, A.P. Miodownik, P. Tsakiropoulos, Mat. Sci. Technol., 1992, 8, 922–29Google Scholar
  15. Z. Fan, A.P. Miodownik, P. Tsakiropoulos, Mat. Sci. Technol., 1993, 9, 1094–100Google Scholar
  16. F. Felten, S. Schneider, T. Sadowski, Int. J. Ref. Mat. Hard Mat., 2008, 26, 55–60Google Scholar
  17. N.A. Fleck, J.R. Willis, J. Mech. Phys. Solids, 2004, 52, 1855–88zbMATHMathSciNetCrossRefGoogle Scholar
  18. L.B. Freund, J. Cryst. Growth, 1993, 132, 341–44CrossRefGoogle Scholar
  19. L.B. Freund, J. Mech. Phys. Solids, 1996, 44, 723–36CrossRefGoogle Scholar
  20. L.B. Freund, J. Mech. Phys. Solids, 2000, 48, 1159–74zbMATHMathSciNetCrossRefGoogle Scholar
  21. T. Fujimoto, N. Noda, J. Am. Cer. Soc., 2001, 84, 1480–86Google Scholar
  22. A.E. Gianakopoulos, S. Suresh, M. Finot, M. Olsson, Acta Matall. Mater., 1995, 43, 1335–54CrossRefGoogle Scholar
  23. D. Gross, T. Seelig, Fracture Mechanics with an Introduction to Micromechanics, Springer,2006Google Scholar
  24. Z. Hashin, S. Shtrikman, J. Mech. Phys. Solids, 1963, 11, 127–40zbMATHMathSciNetCrossRefGoogle Scholar
  25. R. Hill, J. Mech. Phys. Solids, 1965, 13, 213–22CrossRefGoogle Scholar
  26. C.H. Hsueh, Thin Sol. Films, 2002a, 418, 182–88CrossRefGoogle Scholar
  27. C.H. Hsueh, J. Appl. Phys., 2002b, 91, 9652–56CrossRefGoogle Scholar
  28. C.H. Hsueh, A.G. Evans, J. Am. Cer. Soc., 1985, 68, 241–48CrossRefGoogle Scholar
  29. C.H. Hsueh, S. Lee, T.J. Chuang, J. Appl. Mech., 2003a, 70, 151–54zbMATHCrossRefGoogle Scholar
  30. C.H. Hsueh, S. Lee, Composites B, 2003b, 34, 747–52CrossRefGoogle Scholar
  31. M. Jiang, I. Jasiuk, M. Ostoja-Starzewski, Comput. Mat. Sci., 2000, 25, 329–38CrossRefGoogle Scholar
  32. Z.-H. Jin, R.C. Batra, J. Mech. Phys. Solids, 1996a, 44, 1221–35CrossRefGoogle Scholar
  33. Z.-H. Jin, R.C. Batra, J. Therm. Stress, 1996b, 19, 317–39CrossRefGoogle Scholar
  34. Z.-H. Jin, R.C. Batra, J. Therm. Stress, 1998, 21, 151–76CrossRefGoogle Scholar
  35. Z.-H. Jin, G.H. Paulino, R.H. Dodds Jr., Eng. Fract. Mech., 2003, 70, 1885–912CrossRefGoogle Scholar
  36. D. Jeulin, M. Ostoja-Starzewski (Eds), (2001) .Mechanics of Random and Multiscale Microstruc-tures, CISM Courses and Lectures no. 430, Wien, Springer, New YorkGoogle Scholar
  37. A.C. Kaya, F. Erdogan, Quart. Appl. Math., 1987, 45, 105–22zbMATHMathSciNetGoogle Scholar
  38. A. Kawasaki, R. Watanabe, Ceram. Trans., 1993, 34, 157–64Google Scholar
  39. A. Kawasaki, R. Watanabe, Compos. Part B, 1997, 28, 29–35CrossRefGoogle Scholar
  40. A. Kawasaki, R. Watanabe, Eng. Fract. Mech., 2002, 69, 1713–28CrossRefGoogle Scholar
  41. K.-S. Kim, N. Noda” Arch. Appl. Mech., 2002, 72, 127–37zbMATHGoogle Scholar
  42. M. Kouzeli, D.C. Dunand, Acta Mater., 2003, 51, 6105–21CrossRefGoogle Scholar
  43. W. Kreher, W. Pomope, Internal Stress in Heterogeneous Materials, Akademie Verlag, Berlin,1989Google Scholar
  44. V.D. Krstic, Phil. Mag. A, 1983, 48, 695–708CrossRefGoogle Scholar
  45. G. Li, P. Ponte Castañeda, Appl. Mech. Rev., 1994, 47, S77–94Google Scholar
  46. Z. Li, S. Schmauder, M. Dong, Comput. Mater. Sci., 1999, 15, 11–21zbMATHCrossRefGoogle Scholar
  47. M.N. Miller, J. Math. Phys., 1969, 10, 1988–2004CrossRefGoogle Scholar
  48. R.J. Moon, M. Tilbrook, M. Hoffman, A. Neubrand, J. Am. Cer. Soc., 2005, 88, 666–74CrossRefGoogle Scholar
  49. T. Mori, K. Tanaka, Acta Metall., 1973, 21, 571–74CrossRefGoogle Scholar
  50. K.W. Morton, D.F. Mayers, Numerical Solutions of Partial Differential Equations, An Introduction, Cambridge Univ. Press, Cambridge, 2005Google Scholar
  51. H. Moulinec, P. Sequet, Eur. J. Mech. A/Solids, 2003, 22, 751–70zbMATHMathSciNetCrossRefGoogle Scholar
  52. R.J. Munro, J. Am. Cer. Soc., 2001, 84, 1190–92Google Scholar
  53. D. Munz, T. Fett, Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection,Springer, Berlin, 1999Google Scholar
  54. K. Nakonieczny and T. Sadowski, Comput. Mater. Sci., 2008, (doi: 10.1016/j.commatsci.2008.08.0.19)Google Scholar
  55. S. Nemat-Nasser, M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials,Nordh-Holland, Amsterdam, 1993zbMATHGoogle Scholar
  56. A. Neubrand, J. Rödel, Z. Metallkd., 1997, 88, 358–71Google Scholar
  57. A. Neubrand, T.J. Chung, J. Rödel, E.D. Steffler, T. Fett, J. Mat. Res., 2002, 17, 2912–20CrossRefGoogle Scholar
  58. N. Noda, J. Thermal Stress, 1999, 22, 477–512MathSciNetCrossRefGoogle Scholar
  59. N. Noda, R.B. Hetnarski, Y. Tanigawa, Thermal stress, Lastran Corporation, USA, 2000Google Scholar
  60. M. Ostoja-Starzewski, Appl. Mech. Rev., 1994, 47, S221–S230Google Scholar
  61. M. Ostoja-Starzewski,Microstructural Randomness and Scaling in Mechanics of Materials,Chapman&Hall/CRC, 2007Google Scholar
  62. M. Ostoja-Starzewski, J. Schulte, Phys. Rev. B, 1996, 54, 278–85CrossRefGoogle Scholar
  63. M. Ostoja-Starzewski, P.Y. Sheng, I. Jasiuk, ASME J. of Engng. Mat. Tech., 1994, 116, 384–91CrossRefGoogle Scholar
  64. G.A. Papadopoulos, Fracture Mechanics. The Experimental Method of Caustics and the Det.-Criterion of Fracture, Springer, 1993Google Scholar
  65. M.J. Pindera, J. Aboudi, S.M. Arnold, J. Am. Cer. Soc., 1998, 81, 1525–36CrossRefGoogle Scholar
  66. M.J. Pindera, J. Aboudi, S.M. Arnold, Eng. Fract. Mech., 2002, 69, 1587–606CrossRefGoogle Scholar
  67. S. Pitakthapanaphong, E.P. Busso, J. Mech. Phys. Solids, 2002, 50, 695–716zbMATHCrossRefGoogle Scholar
  68. P. Ponte Castañeda, J. Mech. Phys. Solids, 1991, 39, 45–71zbMATHMathSciNetCrossRefGoogle Scholar
  69. P. Ponte Castañeda, P. Sequet, Adv, in Appl. Mech., 1998, 34, 171–302CrossRefGoogle Scholar
  70. E. Postek” T. Sadowski, S.J. Hardy, 2005. The mechanical response of a ceramic polycrys-talline material with inter-granular layers. In: Proc. VIII International Conference on Computational Plasticity, COMPLAS VIII, E. Oñate, D.R.J. Owen eds., CIMNE, Barcelona, pp.1075–78Google Scholar
  71. R. Pyrz, Comp. Sci. Techn., 1994, 50, 539–46CrossRefGoogle Scholar
  72. R. Pyrz and B. Bochenek, Sci. Engng. Comp. Mat., 1994, 3, 95–109Google Scholar
  73. R. Pyrz and B. Bochenek, Int. J. Solids Struct., 1998, 35, 2413–27zbMATHCrossRefGoogle Scholar
  74. K.S. Ravichandran, J. Am. Cer. Soc., 1994, 77, 1178–84CrossRefGoogle Scholar
  75. K.S. Ravichandran, Mat. Sci. Eng., 1995, A201, 269–76Google Scholar
  76. T. Reiter, G.J. Dvorak, V. Tvergaard, J. Mech. Phys. Solids, 1997, 45, 1281–302CrossRefGoogle Scholar
  77. T. Sadowski, Mech. Mater., 1994, 18, 1–16CrossRefGoogle Scholar
  78. T. Sadowski (Ed.), (2005a) Multiscale Modelling of Damage and Fracture Processes in Composite Materials, CISM Courses and Lectures no. 474, Wien, Springer, New YorkGoogle Scholar
  79. T. Sadowski, Modelling of Damage and Fracture Processes of Ceramic Matrix Composites. In CISM Courses and Lectures No. 474, ed. T. Sadowski, Springer, Wien, New York, 2005b,pp. 271–309Google Scholar
  80. T. Sadowski, S. Samborski, Comput. Mater. Sci., 2003a, 28, 512–17CrossRefGoogle Scholar
  81. T. Sadowski, S. Samborski, J. Am. Ceram. Soc., 2003b, 86, 2218–21Google Scholar
  82. T. Sadowski, A. Neubrand, Int. J. Frac. 2004, 127, L135–L140CrossRefzbMATHGoogle Scholar
  83. T. Sadowski T., A. Nowicki, Comput. Mater. Sci., 2008, 43, 235–41CrossRefGoogle Scholar
  84. T. Sadowski, K. Nakonieczny, Comput. Mater. Sci., 2008, 43, 171–78CrossRefGoogle Scholar
  85. T. Sadowski, S. J. Hardy, E. Postek, Comput. Mater. Sci., 2005a, 34, 46–63CrossRefGoogle Scholar
  86. T. Sadowski, S. Samborski, Z. Librant, Key Eng. Mat., 2005b, 290, 86–93Google Scholar
  87. T. Sadowski, M. Boniecki, Z. Librant, Adv. Sci. Tech., 2006a, 45, 1640–45CrossRefGoogle Scholar
  88. T. Sadowski, S. J. Hardy, E. Postek, Mater. Sci. Eng. A, 2006b,424, 230–38CrossRefGoogle Scholar
  89. T. Sadowski, M. Boniecki, Z. Librant, Proc. ECERS'07, Berlin 17–21 June 2007b. (CD-ROM)Google Scholar
  90. T. Sadowski, E. Postek, Ch. Denis, Comput. Mat. Sci., 2007c, 39, 230–36CrossRefGoogle Scholar
  91. T. Sadowski, S. Ataya, A. Nakonieczny, Comput. Mater. Sci. In: 2008a. (doi:10.1016/j.commatsci.2008.07.011)Google Scholar
  92. T. Sadowski, M. Boniecki, Z. Librant, A. Nakonieczny, Int. J. Heat Mass Transfer, 2007a, 50,4461–67zbMATHCrossRefGoogle Scholar
  93. T. Sadowski, T. Niezgoda, K. Kosiuczenko, M. Boniecki, Z. Librant, 2008b, (in preparation)Google Scholar
  94. S. Schmauder, U. Weber, I. Hofinger, A. Neubrand, Te c h. M e c h., 1999, 19, 313–20Google Scholar
  95. S. Schmauder, U. Weber, E. Soppa, Comput. Mater. Sci., 2003, 26, 142–53CrossRefGoogle Scholar
  96. P. Suquet, (1997) Continuum Micromechanics, CISM Courses and Lectures no. 377, Wien,Springer, New YorkGoogle Scholar
  97. R. Stevens, Introduction to Zirconia, Magnesium Elektron Ltd., 1986Google Scholar
  98. S. Suresh, A. Mortensen, Fundamentals of Functionally Graded Materials, Institute of Materials, London, 1998Google Scholar
  99. D.R.S. Talbot, J.R. Willis, IMA J. Appl.Math., 1985, 35, 39–54zbMATHMathSciNetCrossRefGoogle Scholar
  100. D.R.S. Talbot, J.R. Willis, Int. J Solids Struct., 1992, 29, 1981–87zbMATHMathSciNetCrossRefGoogle Scholar
  101. D.R.S. Talbot, J.R. Willis, Proc. Roy. Soc., 1994, A447, 365–84Google Scholar
  102. D.R.S. Talbot, J.R. Willis, Proc. Roy. Soc., 2004, A460, 2705–23MathSciNetGoogle Scholar
  103. I. Tamura, Y. Tomota, H. Ozawa, In: Proc. Third Int. Con. Strength Metal land Alloys, Vol. 1.,Cambridge: Institute of Metals, 1973, 611–15Google Scholar
  104. Y. Tanigawa, M. Matsumoto, T. Akai, JSME Int. Journal, Series A, 1997, 40, 84–93Google Scholar
  105. S. Torquato, Int. J. Sol. Struct., 1998, 35, 2385–2406zbMATHCrossRefGoogle Scholar
  106. S. Torquato, Random Heterogeneous Materials, Springer, New York, 2002zbMATHGoogle Scholar
  107. F. Trancert, F. Osterstock, Scr. Mat., 1997, 37, 443–447CrossRefGoogle Scholar
  108. L.I. Tuschinskii, Poroshk. Metall., 1983, 7, 85 (translated in .Powder Metallurgy and Metall Ceramics, 1983Google Scholar
  109. B.-L. Wang, Y.-W. Mai, Int. J. Mech. Sci., 2005, 47, 303–17CrossRefGoogle Scholar
  110. B.-L. Wang, Y.-W. Mai, X.-H. Zhang, Acta Mater., 2004, 52, 4961–72CrossRefGoogle Scholar
  111. L.D. Wegner, L.J. Gibson, Int. J. Mech. Sci., 2000, 42, 925–42zbMATHCrossRefGoogle Scholar
  112. E. Werner, T. Siegmund, H. Weinhandl, F.D. Fisher, Appl. Mech. Rev., 1994, 47, S231–S240CrossRefGoogle Scholar
  113. D.S. Wilkinson, W. Pompe, M. Oeshner, Prog. Mat. Sci., 2001, 46, 379–405CrossRefGoogle Scholar
  114. B-L. Wang, Y.-W. Mai, Int. J.Mech. Sci., 2005, 47, 303–317CrossRefGoogle Scholar
  115. B-L. Wang, Y.-W. Mai, X-H. Zhang, Acta Mater., 2004, 52, 4961–72CrossRefGoogle Scholar
  116. J.R. Willis, J. Mech. Phys. Solids, 1977, 25, 185–202zbMATHCrossRefGoogle Scholar
  117. J.R. Willis, Eur. J. Mech. A/Solids, 2000, 19, S165–S184Google Scholar
  118. O.C. Zienkiewicz, R.L. Taylor, The Finie Element Method, McGraw-Hill, New York, 1987Google Scholar
  119. J.R. Zuiker, Com. Eng., 1995, 7, 807–19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Solid MechanicsLublin University of TechnologyLublinPoland

Personalised recommendations