Skip to main content

Indirect Contributions of AM Fungi and Soil Aggregation to Plant Growth and Protection

  • Chapter
Mycorrhizae: Sustainable Agriculture and Forestry

Abstract

Ecological and biological engineering contribute indirectly to the fitness of the soil environment and promote plant growth and protection. This engineering modifies soil physical, chemical, and biological attributes to enhance nutrient cycling, increase soil organic matter, and improve soil quality. Arbuscular mycorrhizal (AM) fungi, under most conditions, improve plant growth directly by providing greater and more efficient access via fungal hyphae for absorption of nutrients, especially P, and delivery of these nutrients to the plant. The AM symbiosis also augments disease resistance in host plants and suppresses the growth of non-mycorrhizal weeds. When plants moved from an aquatic to a terrestrial environment, mycorrhizal fungi were an integral part of their success by providing efficient nutrient absorption from the low organic matter mineral soil. In addition, AM fungi stabilize soil aggregates and promote the growth of other soil organisms by exuding photosynthetically-derived carbon into the mycorrhizosphere. Glomalin is a glycoprotein produced by AM fungi which probably originated as a protective coating on fungal hyphae to keep water and nutrients from being lost prior to reaching the plant host and to protect hyphae from decomposition and microbial attack. This substance also helps in stabilizing soil aggregates by forming a protective polymer-like lattice on the aggregate surface. AM fungal growth and biomolecules engineer well-structured soil where the distribution of water-stable aggregates and pore spaces provides resistance to wind and water erosion, greater air and water infiltration rates favorable for plant and microbial growth, nutrients in protect micro-sites near the plant roots, and protection to aggregate-occluded organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, L.K., Robson, A.D., Jasper, D.A., and Gazey, C., 1992, What is the role of VA mycorrhizal hyphae in soil? In: Mycorrhizas in Ecosystems. D.J. Read et al. (Eds.). CAB International, Wallingford, UK, pp. 37-41.

    Google Scholar 

  • Andrade, G., Mihara, K.L., Linderman, R.G., and Bethlenfalvay, G.J., 1998, Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil. 202: 89-96.

    Article  CAS  Google Scholar 

  • Askolin, S., Nakari-Setala, T., and Tenkanen, M., 2001, Overproduction, purification, and characterization of the Trichoderma reesei hydrophobin HFBI. Appl. Microbiol. Biotechnol. 57: 124-130.

    Article  CAS  PubMed  Google Scholar 

  • Bedini, S., Avio, L., Argese, E., and Giovannetti, M., 2007, Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agric. Ecosyst. Environ. 120: 463-466.

    Article  CAS  Google Scholar 

  • Bethlenfalvay, G.J., Cantrell, I.C., Mihara, K.L., and Schreiner, R.P., 1999, Relationships between soil aggregation and mycorrhizae as influenced by soil biota and nitrogen nutrition. Biol. Fert. Soils 28: 356-363.

    Article  Google Scholar 

  • Binet, Ph., Portal, J.M., and Leyval, C., 2000, Fate of polycyclic aromatic hydrocarbons (PAH) in the rhizosphre and mycorrhizosphere of ryegrass. Plant Soil. 227: 207-213.

    Article  CAS  Google Scholar 

  • Bolliger, A., Nalla, A., Magid, J., de Neergaard, A., Nalla, A.D., and Bog-Hansen, T.C., 2008, Re-examining the glomalin-purity of glomalin-related soil protein fractions through immunochemical, lectin-affinity and soil labeling experiments. Soil Biol. Biochem. 40: 887-893.

    Article  CAS  Google Scholar 

  • Brundrett, M.C., 2002, Coevolution of roots and mycorrhizas of land plants. New Phytol. 154: 275-304.

    Article  Google Scholar 

  • Budi, S.W., van Tuinen, D., Martinotti, G., and Gianinazzi, S., 1999, Isolation from Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza deve-lopment and antagonistic towards soilborne fungal pathogens. Appl. Envion. Microbiol. 65: 5148-5150.

    CAS  Google Scholar 

  • Caesar-TonThat, T.-C., and Cochran, V.L., 2000, Soil aggregate stabilization by a sapro-phytic lignin-decomposing basidiomycete fungus. I. Microbiological aspects. Biol. Fert. Soils 32: 374-380.

    Article  Google Scholar 

  • Chaney, K., and Swift, R.S., 1986, Studies on aggregate stability. I. Reformation of soil aggregates. J. Soil Sci. 37: 329-335.

    Article  CAS  Google Scholar 

  • Cheng, X., and Baumgartner, K., 2006, Effects of mycorrhizal roots and extraradical hyphae on 15N uptake from vineyard cover crop litter and the soil microbial community. Soil Biol. Biochem. 38: 2665-2675.

    Article  CAS  Google Scholar 

  • Chenu, C., Le Bissonnais, Y., and Arrouays, D., 2000, Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J. 64: 1479-1486.

    CAS  Google Scholar 

  • Chern, E.C., Tsai, D.W., and Ogunseitan, O.A., 2007, Deposition of glomalin-related soil pro-tein and sequestered toxic metals into watersheds. Environ. Sci. Technol. 41: 3566-3572.

    Article  CAS  PubMed  Google Scholar 

  • Clark, R.B., and Zeto, S.K., 1996, Iron acquisition by mycorrhizal maize grown on alkaline soil. J. Plant Nutrit. 19: 247-264.

    Article  CAS  Google Scholar 

  • Corgie, S.C., Fons, F., Beguiristain, T., and Leyval, C., 2006, Biodegradation of phenanthrene, spatial distribution of bacterial populations and dioxygenase expression in the mycorrhi-zosphere of Lolium perenne inoculated with Glomus mossese. Mycorrhiza 16: 207-212.

    Article  CAS  PubMed  Google Scholar 

  • Degens, B.P., 1997, Macro-aggregation of soils by biological bonding and binding mech-anisms and the factors affecting these: a review. Aust. J. Soil Res. 35: 431-459.

    Article  Google Scholar 

  • Driver, J.D., Holben, W.E., and Rillig, M.C., 2005, Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 37: 101-106.

    Article  CAS  Google Scholar 

  • Filion, M., St-Arnaud, M., and Jabaji-Hare, S.H., 2003, Quantification of Fusarium solani f. sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology 93: 229-235.

    Article  CAS  PubMed  Google Scholar 

  • Friese, C.F., and Allen, M.F., 1991, The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycol. 83: 409-418.

    Article  Google Scholar 

  • Gadkar, V., and Rillig, M.C., 2006, The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol. Lett. 263: 93-101.

    Article  CAS  PubMed  Google Scholar 

  • Gensel, P.G., and Andrews, H.N., 1987, The evolution of early land plants. Amer. Sci. 75: 478-489.

    Google Scholar 

  • George, E., Haussler, K., Kothari, S.K., Ki, X.-L., and Marschner, H., 1992, Contribution of mycorrhizal hyphae to nutrient and water uptake by plants. In: Mycorrhizas in Ecosystems. D.J. Read et al. (Eds.). CAB International, Wallingford, UK.

    Google Scholar 

  • Gonzalez-Chavez, M.C., Carillo-Gonzelez, R., Wright, S.E., and Nichols, K.A., 2004, The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ. Poll. 130: 317-323.

    Article  CAS  Google Scholar 

  • Halvorson, J.J., and Gonzalez, J.M., 2008, Tannic acid reduces recovery of water-soluble carbon and nitrogen from soil and affects the composition of Bradford-reactive soil protein. Soil Biol. Biochem. 40: 186-197.

    Article  CAS  Google Scholar 

  • Harner, M.J., Ramsey, P.W., and Rillig, M.C., 2007, Protein accumulation and distribution in floodplain soils and river foam. Ecol. Lett. 7: 829-836.

    Article  Google Scholar 

  • Iyer, S., and Lonnerdal, B., 1993, Lactoferrin, lactoferrin receptors and iron metabolism. Euro. J. Clin. Nutr. 47: 232-241.

    CAS  Google Scholar 

  • Janos, D.P., 2007, Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17: 75-91.

    Article  PubMed  Google Scholar 

  • Johnson, D., Krsek, M., Weillington, E.M., Stott, A.W., Cole, L., Bardgett, R.D., Read, D.J., and Leake, J.R., 2005, Soil invertebrates disrupt carbon flow through fungal networks. Science 309: 1047.

    Article  CAS  PubMed  Google Scholar 

  • Jones, C.A., Basch, G., Baylis, A.D., Bazzoni, D., Biggs, J., Bradbury, R.B., Chaney, K., Deeks, L.K., Field, R., Gómex, J.A., Jones, R.J.A., Jordan, V.W.L., Lane, M.C.G., Leake, A., Livermore, M., Owens, P.N., Ritz, K., Sturny, W.G., and Thoms, F., 2006, Conservaion Agriculture in Europe - An Approach to Sustainable Crop Production by Protecting Soil and Water? SOWAP, Jealott’s Hill, Bracnell, UK.

    Google Scholar 

  • Jordan, N.R., Larson, D.L., and Huerd, S.C., 2008, Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biol. Invasion. 10: 177-190.

    Article  Google Scholar 

  • Kershaw, M.J., and Talbot N.J., 1998, Hydrophobins and repellents: proteins with funda-mental roles in fungal morphogenesis. Fungal Gene. Biol. 23: 18-33.

    Article  CAS  Google Scholar 

  • Lovelock, C.E., Wright, S.F., Clark, D.A., and Ruess, R.W., 2004, Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J. Ecol. 92: 278-287.

    Article  CAS  Google Scholar 

  • Miller, R.M., and Jastrow, J.D., 1990, Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol. Biochem. 22: 579-584.

    Article  Google Scholar 

  • Millner, P.D., and Wright, S.F., 2002, Tools for support of ecological research on arbuscular mycorrhizal fungi (Review article). Symbiosis 33: 101-123.

    Google Scholar 

  • Nagasako, Y., Saito, H., Tamura, Y., Shimamura, S., and Tomita, M., 1993, Iron-binding pro-perties of bovine lactoferrin in iron-rich solution. J. Dairy Sci. 76: 1876-1881.

    CAS  PubMed  Google Scholar 

  • Nichols, K.A., and Wright, S.F., 2004, Contributions of soil fungi to organic matter in agricultural soils. In: Functions and Management of Soil Organic Matter in Agroecosystems. F. Magdoff and R. Weil (Eds.). CRC, Washington, DC, pp. 179-198.

    Google Scholar 

  • Nichols, K.A., and Wright, S.F., 2005, Comparison of Glomalin and Humic Acid in Eight Native U.S. Soils. Soil Sci. 170 : 985-997.

    Article  CAS  Google Scholar 

  • Nichols, K.A., and Wright, S.F., 2006, Carbon and nitrogen in operationally-defined soil organic matter pools. Biol. Fert. Soils. 43: 215-220.

    Article  CAS  Google Scholar 

  • Nogueira, M.A., Nehls, U., Hampp, R., Poralla, K., and Cardoso, E.J.B.N., 2007, Mycorrhiza and soil bacteria influence extract-able iron and manganese in soil and uptake by soybean. Plant Soil 298: 273-284.

    Article  CAS  Google Scholar 

  • Olsson, P.A., Thingstrup, I., Jakobsen, I., and Baath, E., 1999, Estimation of the biomass of arbuscular mycorrhizal fungi in linseed field. Soil Biol. Biochem. 31: 1879-1887.

    CAS  Google Scholar 

  • Paulsson, M.A., Svensson, U., Kishore, A.R., and Naidu, A.S., 1993, Thermal behavior of bovine lactoferrin in water and its relation to bacterial interaction and antibacterial activity. J. Dairy Sci. 76: 3711-3720.

    Article  CAS  PubMed  Google Scholar 

  • Pawlowska, T.E., Chaney, R.L., Chin, M., and Charvat, I., 2000, Effects of metal phyto-extraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill. Appl. Environ. Microbiol. 66: 2526-2530.

    Article  CAS  PubMed  Google Scholar 

  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., and Blair, R., 1995, Environmental and economic costs of soil erosion and conservation benefits. Science 267: 1117-1123.

    Article  CAS  PubMed  Google Scholar 

  • Pirozynski, K.A., and Malloch, D.W., 1975, The origin of land plants: a matter of myco-trophism. BioSystems 6: 153-164.

    Article  CAS  PubMed  Google Scholar 

  • Preger, A.C., Rillig, M.C., Johns, A.R., Du Preez, C.C., Lobe, I., and Amelung, W., 2007, Losses of glomalin-related soil protein under prolonged arable cropping: a chronosequence study in sandy soils of the South African Highveld. Soil Biol. Biochem. 39: 445-453.

    CAS  Google Scholar 

  • Purin, S., and Rillig, M.C., 2008, Immuno-cytolocalization of glomalin in the mycelium of arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol. Biochem. 40: 1000-1003.

    CAS  Google Scholar 

  • Redecker, D., Morton, J.B., Bruns, T.D., 2000, Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mole. Phylo. Evol. 14: 276-284.

    Article  CAS  Google Scholar 

  • Rillig, M.C., 2004, Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84: 355-363.

    Google Scholar 

  • Rillig, M.C., Caldwell, B.A., Wosten, H.A.B., and Sollins, P., 2007, Role of protein in soil carbon and nitrogen storage: controls on persistence. Biogeochem. 85: 25-44.

    Article  CAS  Google Scholar 

  • Rillig, M.C., and Mummey, D.L., 2006, Tansley review - mycorrhizas and soil structure. New Phytol. 171: 41-53.

    Article  CAS  PubMed  Google Scholar 

  • Rillig, M.C., and Steinberg, P.D., 2002, Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol. Biochem. 34: 1371-1374.

    CAS  Google Scholar 

  • Rillig, M.C., Wright, S.F., Allen, M.F., and Field, C.B., 1999, Rise in carbon dioxide changes soil structure. Nature 400: 628.

    Article  CAS  Google Scholar 

  • Rillig, M.C., Wright, S.F., Nichols, K.A., Schmidt, W.F., and Torn, M.S., 2001, Large con-tribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233: 167-177.

    Article  CAS  Google Scholar 

  • Roldan, A., Salinas-Gracia, J.R., Alguacil, M.M., and Caravaca, F., 2007, Soil sustainability indicators following conservation tillage practices under subtropical maize and bean crops. Soil Till. Res. 93: 273-282.

    Google Scholar 

  • Rosier, C.L., Hoye, A.T., and Rillig, M.C., 2007, Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol. Biochem. 38: 2205-2211.

    Google Scholar 

  • Schindler, F.A., Mercer, E.J., and Rice, J.A., 2007, Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol. Biochem. 39: 320-329.

    CAS  Google Scholar 

  • Schüßler, A., 2002, Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant Soil 244: 75-83.

    Article  Google Scholar 

  • Schüßler, A., Martin, H., Cohen, D., Fitz, M., and Wipf, D., 2007, Addendum - arbuscular mycorrhiza-studies on the geosiphon symbiosis lead to the chacterization of the first glomeromycotan sugar transporter. Plant Sign. Behav. 2: 314-317.

    Google Scholar 

  • Schwartzman, D.W., and Volk, T., 1989, Biotic enhancement of weathering and the habitabi-lity of Earth. Nature 340: 457-460.

    Article  Google Scholar 

  • Selim, S., Negrel, J., Govaerts, C., Gianinazzi, S., and van Tuinen, D., 2005, Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere. Appl. Enivron. Microbiol. 71: 6501-6507.

    Article  CAS  Google Scholar 

  • Six, J., Carpenter, A., van Kessel, C., Merck, R., Harris, D., Horwath, W.R., and Lüscher, A., 2001, Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality. Plant Soil 234: 27-36.

    Article  CAS  Google Scholar 

  • Steinberg, P.D., and Rillig, M.C., 2003, Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biol. Biochem. 35: 191-194.

    CAS  Google Scholar 

  • Tinker, P.B., Durall, D.M., and Jones, M.D., 1994, Carbon use efficiency in mycorrhizas: theory and sample calculations. New Phytol. 128: 115-122.

    Article  CAS  Google Scholar 

  • Toro, M., Azcón, R., and Barea, J.-M., 1997, Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobactera to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl. Envion. Micobiol. 63: 4408-4412.

    CAS  Google Scholar 

  • Treseder, K.K., Turner, K.M., and Mack, M.C., 2007, Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage. Global Change Biol. 13: 78-88.

    Article  Google Scholar 

  • Wessels, J.G.H., 1997, Hydrophobins: proteins that change the nature of the fungal surface. Adv. Microb. Physiol. 38: 1-45.

    Article  CAS  PubMed  Google Scholar 

  • Wessels, J.G.H., 1999, Fungi in their own right. Fungal Gene. Biol. 27: 134-145.

    CAS  Google Scholar 

  • Whitbeck, J.L, 2001, Effects of light environment on vesicular-arbuscular mycorrhiza deve-lopment in Inga leiocalycina, a tropical wet forest tree. Biotropica 33: 303-311.

    Google Scholar 

  • Whiteford, J.R., and Spanu, P.D., 2002, Hydrophobins and the interactions between fungi and plants. Mole. Plant Pathol. 3: 391-400.

    Article  CAS  Google Scholar 

  • Wright, S.F., 2000, A fluorescent antibody assay for hyphae and glomalin from arbuscular mycorrhizal fungi. Plant Soil 226: 171-177.

    Article  CAS  Google Scholar 

  • Wright, S.F., and Upadhyaya, A., 1996, Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161: 575-585.

    Article  CAS  Google Scholar 

  • Wright, S.F., and Upadhyaya, A, 1998, A survey of soils for aggregate stability and glomalin, a glycoproteins produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198: 97-107.

    Article  CAS  Google Scholar 

  • Wright, S.F., and Upadhyaya, A., 1999, Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyphal traps. Mycorrhiza 8: 283-285.

    Article  CAS  Google Scholar 

  • Wright, S.F., Franke-Snyder, M., Morton, J.B., and Upadhyaya, A., 1996, Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181: 193-203.

    Article  CAS  Google Scholar 

  • Wright, S.F., Upadhyaya, A., and Buyer, J. S., 1998, Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biol. Biochem. 30: 1853-1857.

    CAS  Google Scholar 

  • Wright, S.F., Starr, J.L., and Paltineanu, I.C., 1999, Changes in aggregate stability and con-centration of glomalin during tillage management transition. Soil Sci. Soc. Am. J. 63: 1825-1829.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Nichols, K.A. (2008). Indirect Contributions of AM Fungi and Soil Aggregation to Plant Growth and Protection. In: Siddiqui, Z.A., Akhtar, M.S., Futai, K. (eds) Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8770-7_7

Download citation

Publish with us

Policies and ethics