Aber, J.D., Nadelhoffer, K.J., Steudler, P., and Melillo, J.M., 1989, Nitrogen saturation in northern forest ecosystems. Bioscience 39: 378-386.
CrossRef
Google Scholar
Abuzinadah, R.A., and Read, D.J., 1986, The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol. 103: 481-493.
CAS
CrossRef
Google Scholar
Adriaensen K., Daniël van der Lelie, Laere, A.V., Vangronsveld, J., and Colpaert, J.V., 2003, A zinc-adapted fungus protects pines from zinc stress. New Phytol. 161: 549-555.
CrossRef
CAS
Google Scholar
Ahonen-Jonnarth, U., and Finlay, R.D., 2001, Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 236: 129-138.
CAS
CrossRef
Google Scholar
Ahonen-Jonnarth, U., vanhees, P.A.K., Lundstrom, U.S., and Finlay, R.D., 2000, Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytol. 146: 557-567.
CAS
CrossRef
Google Scholar
Akema, T., and Futai, K., 2005, Ectomycorrhizal development in a Pinus thunbergii stand in relation to location on a slope and effect on tree mortality from pine wilt disease. J. For. Res. 10: 93-99.
CrossRef
Google Scholar
Akiyama, K., Matsuzaki, K., and Hayashi, H., 2005, Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824-827.
CAS
PubMed
CrossRef
Google Scholar
Allen, E., Chambers, J.E., Connor, K.F., Allen, M.F., and Brown, R.W., 1987, Natural re-establishment of mycorrhizae in disturbed alpine ecosystems. Arct. Apl. Res. 19: 11-20.
CrossRef
Google Scholar
Allen, M.F., 1988, Re-establishment of VA-mycorrhizas following severe disturbance: comparative patch dynamics of a shrub desert and a subalpine volcano. Proc. R. Soc. Edinburgh 94B: 63-71.
Google Scholar
Allen, M.F., 1991, The Ecology of Mycorrhizae. New York, Cambridge University Press.
Google Scholar
Andersson, S., Jensen, P., and Soderstrom B., 1996, Effects of mycorrhizal colonization by Paxillus involutus on uptake of Ca and P by Picea abies and Betula pendula grown in unlimed and limed peat. New Phytol. 133: 695-704.
CAS
CrossRef
Google Scholar
Arnebrant, K., Ek H., Finlay, R.D., and Söderstrom, B., 1993, Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol. 124: 231-242.
CrossRef
Google Scholar
Auþina, A., Rudawska, M., Leski, T., Skridaila, A., Edvardas Riepšas, E., and Michal Iwanski, M., 2007, Growth and mycorrhizal community structure of Pinus sylvestris seedlings following the addition of forest litter. Appl. Environ. Microbiol. 73: 4867-4873.
CrossRef
CAS
Google Scholar
Bais, H.P., Walker, T.S., Stermitz, F.R., Hufbauer, R.A., and Vivanco, J.M., 2002, Enantiomeric-dependent phytotoxic and antimicrobial activity of (+/-)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol. 128: 1173-1179.
CAS
PubMed
CrossRef
Google Scholar
Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., and Vivanco, J.M., 2006, The role of root exudates in rhizosphere interactions with plants and other organisms. Ann. Rev. Plant Physiol. Plant Mol. Biol. 57: 233-266.
CAS
Google Scholar
Baxter, J.W., and Dighton, J., 2001, Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions. New Phytol. 152: 139-149.
CrossRef
Google Scholar
Baxter, J.W., and Dighton, J., 2005, Diversity-functioning relationships in ectomycorrhizal fungal communities. In: Dighton J., White J.F., Oudemans P., eds. The Fungal Community. Its Organization and Role in the Ecosystem. 3rd edit. Boca Raton, FL, CRC, 383-398.
Google Scholar
Becker, D.M., Bagley, S.T., and Podila, G.K., 1999, Effects of mycorrhiza-associated streptomycetes on growth of Laccaria bicolor, Cenococcum geophilum, and Armillaria species and on gene expression in Laccaria bicolor. Mycologia 91: 33-40.
CrossRef
Google Scholar
Begon, M., Harper, J.L., and Townsend, C.R., 1996, Ecology: Individuals, Populations and Communities. 3rd edit. Oxford, Blackwell Science.
Google Scholar
Bending, G.D., and Read, D.J., 1997, Lignin and soluble phenolic degradation by ecto-mycorrhizal and ericoid mycorrhizal fungi. Mycol. Res. 101: 1348-1354.
CAS
CrossRef
Google Scholar
Bending, G.D., Poole, E.J., Whipps, J.M., and Read D.J., 2002, Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol. Ecol. 39: 219-227.
CAS
PubMed
Google Scholar
Bills, G.F., Holtzman, G.I., and Miller, O.K., 1986, Comparison of ectomycorrhizal basidiomycete communities in red spruce versus northern hardwood forests of West Virginia. Can. J. Bot. 64: 760-768.
CrossRef
Google Scholar
Bingyun, W., and Nioh, I., 1997, Growth and water relations of P. tabulaeformis seedlings inoculated with ectomycorrhizal fungi. Microbes Environ. 12: 69-74.
Google Scholar
Bledsoe, C.S., Tennyson, K., and Lopushinsky, W., 1982, Survival and growth of ourplanted Douglas-fir seedkings inoculated with mycorrhizal fungi. Can. J. For. Res. 12: 720-723.
CrossRef
Google Scholar
Bogeat-Triboulot, M.B., Bartoli, F., Garbaye, J., Marmeisse, R., and Tagu, D., 2004, Fungal ectomycorrhizal community and drought affect root hydraulic properties and soil adherence to roots of Pinus pinaster seedlings. Plant Soil 267: 213-223.
CAS
CrossRef
Google Scholar
Bougher, N.L., Grove, T.S., and Malajczuk, N., 1990, Growth and phosphorus acquisition of karri (Eucalyptus diversicolor F. Muell.) seedlings inoculated with ectomycorrhizal fungi in relation to phosphorus supply. New Phytol. 114: 77-85.
CAS
CrossRef
Google Scholar
Boyle, C.D., and Hellenbrand, K.E., 1991, Assessment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Can. J. Bot. 69: 1764-1771.
CrossRef
Google Scholar
Branzanti, M.B., Rocca, E., and Pisi, A., 1999, Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9: 103-109.
Google Scholar
Braun-Lullemann, A., Huttermann, A., and Majcherczyk, A., 1999, Screening of ecto-mycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons. Appl. Microbiol. Biotechnol. 53: 127-132.
CAS
CrossRef
Google Scholar
Brown, M.T., and Wilkins, D.A., 1985, Zinc tolerance of mycorrhizal Betula. New Phytol. 99: 101-106.
CAS
CrossRef
Google Scholar
Bruns, T.D., 1995, Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170: 63-73.
CAS
CrossRef
Google Scholar
Bucking, H., and Heyser, W., 1994, The effect of ectomycorrhizal fungi on Zn uptake and distribution in seedlings of Pinus sylvestris L. Plant Soil 167: 203-212.
CrossRef
Google Scholar
Burgess, T.I., Malajczuk1, N., and Grove, T.S., 1993, The ability of 16 ectomycorrhizai fungi to increase growth and phosphorus uptake of Eucalyptus globulus LabiU. and E. diversicolor F. Muell. Plant Soil 153: 155-164.
CAS
CrossRef
Google Scholar
Cairney, J.W.G., 1999, Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9: 125-135.
CrossRef
Google Scholar
Cairney, J.W.G., and Chambers, S.M., 1997, Interactions between Pisolithus tinctorius and its hosts: a review of current knowledge. Mycorrhiza 7: 117-131.
CrossRef
Google Scholar
Caravaca, F., Alguacil, M.M., Azcón, R., Parladé, J., Torres, P., and Roldán1, A., 2005, Establishment of two ectomycorrhizal shrub species in a semiarid site after in situ amendment with sugar beet, rock phosphate, and Aspergillus niger. Microb. Ecol. 49: 73-82.
CAS
PubMed
CrossRef
Google Scholar
Castellano, M.A., and Trappe, J.M., 1991, Pisolithus tinctorius fails to improve plantation performance of inoculated conifers in southwestern Oregon. New For. 5: 349-358.
Google Scholar
Chakravarty, C., Peterson, R.L., and Ellis, B.E., 1991, Interaction between the ectomycorrhizal fungus Paxillus involutus, damping-off fungi and Pinus resinosa seedlings. J. Phytopathol. 132: 207-218.
CrossRef
Google Scholar
Chakravarty, P., and Unestam, T., 1987a, Mycorrhizal fungi prevent disease in stressed pine seedlings. J. Phytopathol. 118: 335-340.
CrossRef
Google Scholar
Chakravarty, P., and Unestam, T., 1987b, Differential influence of ectomycorrhizae on plant growth and disease resistance in Pinus sylvestris seedlings. J. Phytopathol. 120: 104-120.
CrossRef
Google Scholar
Chakravarty, P., Khasa, D., Dancik, B., Sigler, L., Wichlacz, M., Trifonov, L.S., and Ayer, W.A., 1999, Integrated control of Fusarium damping-off in conifer seedlings. J. Plant Dis. Prot. 106: 342-352.
Google Scholar
Chalot, M., and Brun, A., 1998, Physiology of organic nitrogen acquisition by ecto-mycorrhizal fungi and ectomycorrhizas. FEMS Microbiol. Rev. 22: 21-44.
CAS
PubMed
CrossRef
Google Scholar
Chalot, M., Kytöviitam, M., Brun, A., Finlay, R.D., and Söderström, B., 1995, Factors affecting amino acid uptake by the ectomycorrhizal fungus Paxillus involutus. Mycol. Res. 99: 1131-1138.
CAS
CrossRef
Google Scholar
Chilvers, G.A., Douglass, P.A., and Lapeyrie, F.F., 1986, A paper-sandwich technique for rapid synthesis of ectomycorrhizas. New Phytol. 103: 597-402.
CrossRef
Google Scholar
Clements, F.E., 1916, Plant Succession: An Analysis of the Development of Vegetation. Carnegie Institute, Washington, DC.
Google Scholar
Coleman, M.D., and Bledsoe, C.S., 1989, Pure culture response of ectomycorrhizal fungi to imposed water stress. Can. J. Bot. 67: 29-39.
CrossRef
Google Scholar
Coleman, M.D., Bledsoe, C.S., and Smit, B.A., 1990, Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings. New Phytol. 115: 275-284.
CAS
CrossRef
Google Scholar
Colpaert, J.V., and Van assche, J.A., 1992, Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant Soil 143: 201-211.
CAS
CrossRef
Google Scholar
Colpaert, J.V., Van Tichelen, K.K., Van Assche, J.A., and Van Laere, A., 1999, Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings. New Phytol. 143: 589-597.
CAS
CrossRef
Google Scholar
Connell, J.H., and Slatyer, R.O., 1977, Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111: 1119-1144.
CrossRef
Google Scholar
Cullings, K.W., Vogler, D.R., Parker, V.T., and Finley, S.K., 2000, Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park. Appl. Environ. Microbiol. 66: 4988-4991.
CAS
PubMed
CrossRef
Google Scholar
Cumming, J., 1996, Phosphate-limitation physiology in ectomycorrhizal pitch pine (Pinus rigida) seedlings. Tree Physiol. 16: 977-983.
PubMed
Google Scholar
Dighton, J., and Jansen, A.E., 1991, Atmospheric pollutants and ectomycorrhizae: more questions than answers? Environ. Pollut. 73: 179-204.
CAS
PubMed
CrossRef
Google Scholar
Dittmann, J., Heyser, W., and Bucking, H., 2002, Biodegradation of aromatic compounds by white rot and ectomycorrhizal fungal species and the accumulation of chlorinated benzoic acid in ectomycorrhizal pine seedlings. Chemosphere 49: 297-306.
CAS
PubMed
CrossRef
Google Scholar
Dixon, R.K., Pallardy, S.G., Garrett, H.E., Cox, G.S., and Sander, I.L., 1983, Comparative water relations of container-grown and bare-root ectomycorrhizal and nonmycorrhizal Quercus velutina seedlings. Can. J. Bot. 61: 1559-1565.
Google Scholar
Donnelly, P.K., Hedge, R.S., and Fletcher, J.S., 1994, Growth of PCB degrading bacteria on compounds from photosynthetic plants. Chemosphere 28: 981-988.
CrossRef
Google Scholar
Dosskey, M.G., Boersma, L., and Linderman, R.G., 1991, Role for the photosynthate demand of ectomycorrhizas in the response of Douglas fir seedlings to drying soil. New Phytol. 117: 327-334.
CrossRef
Google Scholar
Duchesne, L.C., Peterson, R.L., and Ellis, B.E., 1988a, Pine root exudate stimulates the synthesis of antifungal compounds by the ectomycorrhizal fungus Paxillus involutus. New Phytol. 108: 471-476.
CAS
CrossRef
Google Scholar
Duchesne, L.C., Peterson, R.L., and Ellis, B.E., 1988b, Interaction between the ecto-mycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporum. Can. J. Bot. 66: 558-562.
Google Scholar
Duchesne, L.C., Peterson, R.L., and Ellis, B.E., 1989, The time course of disease suppression and antibiosis by the ectomycorrhizal fungus Paxillus involutus. New Phytol. 111: 693-698.
CrossRef
Google Scholar
Duponnois, R., and Garbaye, J., 1991, Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis effects in aseptic and in glasshouse conditions. Ann. Sci. For. 48: 239-251.
CrossRef
Google Scholar
Duponnois, R., Founoune, H., Masse, D., and Pontanier, R., 2005, Inoculation of Acacia holosericea with ectomycorrhizal fungi in a semiarid site in Senegal: growth response and influences on the mycorrhizal soil infectivity after 2 years plantation. For. Ecol. Manage. 207: 351-362.
CrossRef
Google Scholar
Ek, H., Sjögren, M., Arnebrant, K., and Söderström, B., 1994, Extramatrical mycelial growth, biomass allocation and nitrogen uptake in ectomycorrhizal systems in response to collembolan grazing. Appl. Soil Ecol. 1: 155-169.
CrossRef
Google Scholar
Eltrop, L., and Marschner, H., 1996, Growth and mineral nutrition of non-mycorrhizal and mycorrhizal Norway spruce (Picea abies) seedlings grown in semi-hydroponic sand culture. New Phytol. 133: 469-478.
CAS
CrossRef
Google Scholar
Farquhar, M.L., and Peterson, R.L., 1991, Later events in suppression of Fusarium root rot of red pine seedlings by the ectomycorrhizal fungus Paxillus involutus. Can. J. Bot. 69: 1372-1383.
CrossRef
Google Scholar
Finlay, R., and Söderström, B., 1992, Mycorrhiza and carbon flow to the soil. In: Allen M.F., ed. Mycorrhizal Functioning. New York, Chapmaan & Hall, 134-160.
Google Scholar
Finlay, R.D., and Read, D.J., 1986a, The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of carbon-14 labeled carbon between plants inter-connected by a common mycelium. New Phytol. 103: 143-156.
CrossRef
Google Scholar
Finlay, R.D., and Read, D.J., 1986b, The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol. 103: 157-166.
CrossRef
Google Scholar
Finlay, R.D., Ek, H., Ooham, G., and Söderström, B, 1988, Myeelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus syivestris plants infected with four difTerent ectomycorrhizal fungi. New Phytol. 110: 59-66.
CrossRef
Google Scholar
Flores, H.E., Vivanco, J.M., and Loyola-Vargas, V.M., 1999, Radicle biochemistry: the biology of root-specific metabolism. Tren. Plant Sci. 4: 220-226.
CrossRef
Google Scholar
Fogel, R., 1980, Mycorrhizae and nutrient cycling in natural forest ecosystems. New Phytol. 86: 199-212.
CAS
CrossRef
Google Scholar
Fogel, R., and Hunt, G., 1979, Fungal and arboreal biomass in western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Can. J. For. Res. 9: 245-256.
CrossRef
Google Scholar
Fomina, M., Charnock, J.M., Hillier, S., Alexander, I.J., and Gadd, G.M., 2006, Zinc phos-phate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microb. Ecol. 52:322-333.
CAS
PubMed
CrossRef
Google Scholar
Frey-Klett, P., Chavatte, M., Clausse, M.-L., Courrier, S., Roux, C.L., Raaijmakers, J., Martinotti, G. M., Pierrat, J.-C., and Garbaye, J., 2005, Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol. 165: 317-328.
PubMed
CrossRef
Google Scholar
Galli, U., Meier, M., and Brunold, C., 1993, Effects of cadmium on non-mycorrhizal and mycorrhizal Norway spruce seedlings [Picea abies (L,) Karst,] and its ectomycorrhizal fungus Laccaria laccata (Seop, ex Fr,) Bk, & Br.: Sulphate reduction, thiols and distribution of the heavy metal. New Phytol. 125: 837-843.
CAS
CrossRef
Google Scholar
Galli, U., Schuepp, H., and Brunold, C., 1994, Heavy metal binding by mycorrhizal fungi. Physiol. Plant. 92: 364-368.
CAS
CrossRef
Google Scholar
Geßler, A., Jung, K., Gasche, R., Papen, H., Heidenfelder, A., Borner, E., Metzler, B., Augustin, S., Hildebr, E., and Rennenberg, H., 2005, Climate and forest management influence nitrogen balance of European beech forests: microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots. Eur. J. For. Res. 124: 95-111.
Google Scholar
Genney, D.R., Alexander, I.J., Killham, K., and Meharg, A.A., 2004, Degradation of the polycyclic aromatic hydrocarbon (PAH) fluorine is retarded in a Scots pine ectomycor-rhizosphere. New Phytol. 163: 641-649.
CAS
CrossRef
Google Scholar
Gill, R.A., and Jackson, R.B., 2000, Global patterns of root turnover for terrestrial eco-systems. New Phytol. 147: 13-31.
CrossRef
Google Scholar
Godbold, D.L., Jentschke, G., and Marschner, P., 1998, Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere 36: 757-762.
CAS
CrossRef
Google Scholar
Golley, F.B., 1965, Structure and function of an old-field broomsedge community. Ecol. Monogr. 35: 113-137.
CrossRef
Google Scholar
Gomes, E.A., de Barros, E.G., Kasuya, M.C.M., and Araújo, E.F., 2004, Molecular charac-terization of Pisolithus spp. isolates by rDNA PCR-RFLP. Mycorrhiza 8: 197-202.
CrossRef
Google Scholar
Grayston, S.J., Wang, S., Campbell, C.D., and Edwards, A.C., 1998, Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30: 369-378.
CAS
Google Scholar
Grenon, F., Bradley, R.L., Jones, M.D., Shipley, B., and Peat, H., 2004, Soil factors controlling mineral N uptake by Picea engelmannii seedlings: the importance of gross NH4+ production rates. New Phytol. 165: 791-800.
CrossRef
CAS
Google Scholar
Guenoune, D., Galili, S., Phillips, D.A., Volpin, H., Chet, I., Okon, Y., and Kapulnik, Y., 2001, The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Sci. 160: 925-932.
CAS
PubMed
CrossRef
Google Scholar
Guillon, C., St-Arnaud, M., Hamel, C., and Jabaji-Hare, S.H., 2002, Differential and systemic alteration of defence-related gene transcript levels in mycorrhizal bean plants infected with Rhizoctonia solani. Can. J. Bot. 80: 305-315.
CAS
CrossRef
Google Scholar
Harley, J.L., and McCready, C.C., 1952, The uptake of phosphatase by excised mycorrhizal roots of the beech. III. The effect of the fungal sheath on the availability of phosphate to the core. New Phytol. 51: 342-348.
CrossRef
Google Scholar
Harrison, A.F., Stevens, P.A., Dighton, J., Quarmby, C., Dickinson, A.L., Jones, H.E., and Howard, D.M., 1995, The critical load of nitrogen for Sitka spruce forests on stagnopodsols in Wales: Role of nutrient limitations. For. Ecol. Manag. 76: 139-148.
CrossRef
Google Scholar
Hartley-Whitaker, J., Cairney, J.W.G., and Meharg, A.A., 2000, Sensitivity to Cd or Zn of host and symbiont of ectomycorrhizal Pinus sylvestris L. (Scots pine) seedlings. Plant Soil 218: 31-42.
CAS
CrossRef
Google Scholar
He, X.H., Critchley, C., Ng, H., and Bledsoe, C.S. 2004, Reciprocal N (15NH4 + or 15NO3 í) transfer between non-N2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol. 163: 629-640.
CrossRef
Google Scholar
Hentschel, E., Jentschke, G., Marschner, P., Schlegel, H., and Godbold, D.L., 1993, The effect of Pxillus involutus on the aluminium sensitivity of Norway spruce seedlings. Tree Physiol. 12: 379-390.
CAS
PubMed
Google Scholar
Heslin, M.C., and Douglas, G.C., 1986, Effects of ectomycorrhizal fungi on growth and development of poplar derived from tissue culture. Sci. Horti. 30: 143-149.
CrossRef
Google Scholar
Hobbie, E.A., 2006, Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87: 653-569.
Google Scholar
Högberg, H., 1989, Growth and nitrogen inflow rates in mycorrhizal and non-mycorrhizal seedlings of Pinus sylvestris. For. Ecol. Manag. 28: 7-17.
CrossRef
Google Scholar
Horan, D.P., and Chilvers, G.A., 1990, Chemotropism- the key to ectomycorrhizal formation? New Phytol. 116: 297-301.
CAS
CrossRef
Google Scholar
Horton, T.R., and Bruns, T.D., 1998, Multiple host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) and bishop pine (Pinus muricata D. Don). New Phytol. 139: 331-339.
CrossRef
Google Scholar
Horton, T.R., Bruns, T.D., and Parker, V.T., 1999, Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can. J. Bot. 77: 93-102.
CrossRef
Google Scholar
Hung, L.L., and Trappe, J.M., 1983, Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro. Mycologia 75: 234-241.
CrossRef
Google Scholar
Hwang, S.F., Chakravarty, P., and Chang, K.F., 1995, The effect of two ectomycorrhizal fungi, Paxillus involutus and Suillus tomentosus, and of Bacillus subtilis on Fusarium damping-off in jack pine seedlings. Phytoprotection 76: 57-66.
Google Scholar
Jentschke, G., Godbold, D.L., and Huttermann, A., 1991a, Culture of mycorrhizal tree seedlings under controlled conditions: effects of nitrogen and aluminium. Physiol. Plant. 81: 408-416.
CAS
CrossRef
Google Scholar
Jentschke, G., Schlegel, H., and Godbold, D.L., 1991b, The effect of aluminium on uptake and distribution of magnesium and calcium in roots of mycorrhizal Norway spruce seedlings. Physiol. Plant. 82: 266-270.
CAS
CrossRef
Google Scholar
Johnson, N.C., Graham, J.H., and Smith, F.A., 1997, Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135: 575-585.
CrossRef
Google Scholar
Joner, E.J., Leyval, C., and Colpaert, J.V., 2006, Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ. Poll. 142: 34-38.
CAS
CrossRef
Google Scholar
Jones, M.D., and Hutchinson, T.C., 1986, The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol. 102: 429-442.
CAS
CrossRef
Google Scholar
Jones, M.D., Durall, D.M., and Tinker, P.B., 1991, Fluxes of carbon and phosphorus between symbionts in willow ectomycorrhizas and their changes with time. New Phytol. 119: 99-106.
CAS
CrossRef
Google Scholar
Jonsson, L., 1998, Community structure of ectomycorrhizal fungi in Swedish boreal forests, Ph.D. Thesis, Swedish University of Agricultural Sciences.
Google Scholar
Jonsson, L., Dahlberg, A., Nilsson, M.C., Kårén, O., and Zackrisson, O., 1999, Continuity of ectomycorrhizal fungi in self-regenerating boreal Pinus sylvestris forests studied by comparing mycobiont diversity on seedlings and mature trees. New Phytol. 142: 151-162.
CrossRef
Google Scholar
Jonsson, L.M., Nilsson, M., Wardle, D.A., and Zackrisson, O., 2001, Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93: 353-364.
CrossRef
Google Scholar
Jumpponen, A., and Egerton-Warburton, L.M., 2005, Mycorrhizal fungi in successional environments: A community assembly model incorporating host plant, environmental, and biotic filters. In: Dighton J., White J.F., Oudemans P., eds. The Fungal Community. Its Organization and Role in the Ecosystem. 3rd edit. Boca Raton, FL, CRC, 139-168.
Google Scholar
Kårén, O., and Nylund, J.-E., 1996, Effects of N-free fertilization on ectomycorrhiza community structure in Norway spruce stands in Southern Sweden. Plant Soil 181: 295-305.
CrossRef
Google Scholar
Kårén, O., and Nylund, J.-E., 1997, Effects of ammonium sulphate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Can. J. Bot. 75: 1628-1642.
CrossRef
Google Scholar
Kennedy, P.G., and Peay, K.G., 2007, Different soil moisture conditions change the outcome of the ectomycorrhizal symbiosis between Rhizopogon species and Pinus muricata. Plant Soil 291: 155-165.
CAS
CrossRef
Google Scholar
Kennedy, P.G., Izzo, A.D., and Bruns, T.D., 2003, There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J. Ecol. 91: 1071-1080.
CrossRef
Google Scholar
Kikuchi, J., Tsuno, N., and Futai, K., 1991, The effect of mycorrhizae as a resistance factor of pine trees to the pine wood nematode. J. Jpn. For. Soc. 73: 216-218.
Google Scholar
Koide, R.T., 1991, Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol. 117: 365-386.
CAS
CrossRef
Google Scholar
Koide, R.T., Courty, P.E., and Garbaye, J., 2007, Research perspectives on functional diversity in ectomycorrhizal fungi. New Phytol. 174: 240-243.
PubMed
CrossRef
Google Scholar
Krupa, S., and Fries, N., 1971, Studies on ectomycorrhizae of pine. I. Production of volatile organic compounds. Can. J. Bot. 49: 1425-1431.
CAS
CrossRef
Google Scholar
Lamhamedi, M.S., Fortin, J.A., Kope, H. H., and Kropp, B. R., 1990, Genetic variation in ectomycorrhiza formation by Pisolithus arhizus on Pinus pinaster and Pinus banksiana. New Phytol. 115: 689-697.
CrossRef
Google Scholar
Lamhamedi, M.S., Bernier, P.Y., and Fortin, J.A., 1992, Growth, nutrition and response to water stress of Pinus pinaster inoculated with ten dikaryotic strains of Pisolithus sp. Tree Physiol. 10: 153-167.
PubMed
Google Scholar
Landeweert, R., Hoffland, E., Finlay, R.D., Kuyper, T.W., and van Breemen, N., 2001, Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Tren. Ecol. Evol. 16: 248-254.
CrossRef
Google Scholar
Le Tacon, F., Garbaye, J., and Carr, G., 1987, The use of mycorrhizas in temperate and tropical forests. Symbiosis 3: 179-206.
Google Scholar
Leake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L., and Read, D., 2004, Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82: 1016-1045.
CrossRef
Google Scholar
Lewis, J.D., Licitra, J., Tuininga, A.R., Sirulnik, A., Turner, G.D., and Johnson, J., 2004, Oak seedling growth and ectomycorrhizal colonization are less in eastern hemlock stands infested with hemlock woolly adelgid than in adjacent oak stands. Tree Physiol. 28: 629-636.
Google Scholar
Lilja, A., Lija, S., Kukela, T., and Rikala, R. 1997, Nursery practices and management of fungal diseases in forest nurseries in Finland. A Rev. Silva Fennica 31: 79-100.
Google Scholar
Maehara, N., Kikuchi, J., and Futai K., 1993, Mycorrhizae of Japanese black pine (Pinus thunbergii): protection of seedlings from acid mist and effect of acid mist on mycorrhiza formation. Can. J. Bot. 71: 1562-1567.
CrossRef
Google Scholar
Mahmood, S., Finlay, R.D., Fransson, A.-M., and Wallander, H., 2003, Effects of hardened wood ash on microbial activity, plant growth and nutrient uptake by ectomycorrhizal spruce seedlings. FEMS Microbiol. Ecol. 43: 121-131.
CAS
PubMed
CrossRef
Google Scholar
Maier A., Riedlinger J., Fiedler H.P., and Hampp R., 2004, Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycol. Prog. 3: 129-136.
CrossRef
Google Scholar
Marschner, H., and Dell, B., 1994, Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159: 89-102.
CAS
Google Scholar
Martin, F., Ramstedt, M., and Soederhaell, K., 1987, Carbon and nitrogen metabolism in ectomycorrhizal fungi and ectomycorrhizas. Biochimie 69: 569-581.
CAS
PubMed
CrossRef
Google Scholar
Marx, D.H., 1969, The influence of ectotrophic ectomycorrhizal fungi on the resistance to pathogenic infections. I. Antagonism of mycorrhizal fungi to pathogenic fungi and soil bacteria. Phytopathology 59: 153-163.
Google Scholar
Marx, D.H., Ruehle, J.L., Kenney, D.S., Cordell, C.E., Riffle, J.W., Molina, R.J., Pawuk, W. H., Navratil, S., Tinus, R.W., Goodwin, O.C., 1982, Commercial vegetative inoculum of Pisolithus tinctorius and inoculation techniques for development of Ectomycorrhizae on container-grown tree seedlings. For. Sci. 28: 373-400.
Google Scholar
Matsuda, Y., and Hijii, N., 2004, Ectomycorrhizal fungal communities in an Abies firma forest, with special reference to ectomycorrhizal associations between seedlings and mature trees. Can. J. Bot. 82: 822-829.
CrossRef
Google Scholar
McAfee, B.J., and Fortin, J.A., 1986, Competitive interactions of ectomycorrhizal mycobionts under field conditions. Can. J. Bot. 64: 848-852.
CrossRef
Google Scholar
Meharg, A.A., and Cairney, W.G., 2000, Ectomycorrhizas-extending the capabilities of rhizosphere remediation? Soil Biol. Biochem. 32: 1475-1484.
CAS
Google Scholar
Meharg, A.A., Cairney, W.G., and Maguire, N., 1997, Mineralization of 2,4-Dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere 34: 2495-2504.
CAS
CrossRef
Google Scholar
Melin, E., 1963, Some effects of forest tree roots on mycorrhizal Basidiomycetes. In: Mosse, B., and Nutman, P.S., eds. Symbiotic Associations. Cambridge, Cambridge University Press, 124-145.
Google Scholar
Mexal, J., and Reid, C.P.P., 1973, The growth of selected mycorrhizal fungi in response to induced water stress. Can. J. Bot. 51: 1579-1588.
CrossRef
Google Scholar
Mohren, G.M.J., Van den Burg, J., and Burger, F.W., 1986, Phosphorus deficiency induced by nitrogen input in Douglas fir in the Netherlands. Plant Soil 95: 191-200.
CAS
CrossRef
Google Scholar
Molina, R., and Trappe, J.M., 1982, Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. For. Sci. 28: 423-458.
Google Scholar
Molina, R., and Trappe, J.M., 1994, Biology of the ectomycorrhizal genus, Rhizopogon. New Phytol. 126: 653-675.
CrossRef
Google Scholar
Morin, C., Samson, J., and Dessureault, M., 1999, Protection of black spruce seedlings against Cylindrocladium root rot with ectomycorrhizal fungi. Can. J. Bot. 77: 169-174.
CrossRef
Google Scholar
Morte, A., Díaz, G., Rodríguez, P., Alarcón, J.J., and Sánchez-Blanco, M.J., 2001, Growth and water relations in mycorrhizal and nonmycorrhizal Pinus halepensis plants in res-ponse to drought. Biol. Plant. 44: 263-267.
CrossRef
Google Scholar
Nara, K., 2006a, Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol. 169: 169-178.
CAS
PubMed
CrossRef
Google Scholar
Nara, K., 2006b, Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol. 171: 187-198.
PubMed
CrossRef
Google Scholar
Nara, K., and Hogetsu, T., 2004, Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85: 1700-1707.
CrossRef
Google Scholar
Nara, K., Nakaya, H., and Hogetsu, T., 2003, Ectomycorrhizal sporocarps succession and production during early primary succession on Mount Fuji. New Phytol. 158: 193-206.
Google Scholar
Nardini, A., Salleo, S., Tyree, M.T., and Vertovec, M., 2000, Influence of the ectomycorrhizas formed by Tuber melanosporum Vitt. on hydraulic conductance and water relations of Quercus ilex L. seedlings Ann. For. Sci. 57: 305-312.
Google Scholar
Newman, E.I., 1988, Mycorrhizal links between plants: their functioning and ecological significance. Adv. Ecol. Res. 18: 243-270.
CrossRef
Google Scholar
Newton, A.C., and Pigott, C.D., 1990, Mineral nutrition and mycorrhizal infection of seedling oak and birch. New Phytol. 117: 37-44.
CrossRef
Google Scholar
Odum, E.P., 1960, Organic production and turnover in old field succesion. Ecology 41: 34-49.
CrossRef
Google Scholar
Parke, E.L., Linderman R.G. and Black, C.H., 1983, The role of ectomycorrhizas in drought tolerance of douglas-fir seedlings. New Phytol. 95: 83-95.
CrossRef
Google Scholar
Pedersen, E.A., and Chakravarty, P., 1999, Effect of three species of bacteria on damping-off, root rot development, and ectomycorrhizal colonization of lodgepole pine and white spruce seedlings. For. Pathol. 29: 123-134.
Google Scholar
Pedersen, E.A., Reddy, M.S., and Chakravarty, P., 1999, Effect of three species of bacteria on damping-off, root rot development, and ectomycorrhizal colonization of lodgepole pine and white spruce seedlings. Eur. J. For. Pathol. 29: 123-134.
CrossRef
Google Scholar
Peters, N.K., Frost, J.W., and Long, S.R., 1986, A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233: 977-980.
CAS
PubMed
CrossRef
Google Scholar
Quoreshi, A.M., and Timmer, V.R., 2000, Early outplanting performance of nutrient-loaded containerized black spruce seedlings inoculated with Laccaria bicolor: a bioassay study. Can. J. For. Res. 30:744-752.
CrossRef
Google Scholar
Rambelli, A., 1973, The rhizosphere of mycorrhiza. In: Marks G.C., and Kozlowski T.T., eds., Ectomycorrhizae Their Ecology and Physiology. NewYork, Academic Press, 299-349.
Google Scholar
Rasanayagam, S., and Jeffries, P., 1992, Production of acid is responsible for antibiosis by some ectomycorrhizal fungi. Mycol. Res. 96: 971-976.
CAS
CrossRef
Google Scholar
Read, D.J., 1989, Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc. R. Soc. Edinburgh 96B: 89-110.
Google Scholar
Read, D.J., 1992, The mycorrhizal fungal community with special references to nutrient mobilization. In: Carrol G.C., and Wicklow D.T., eds. The Fungal Community: Its Organi-zation and Role in the Ecosystem. New York, Marcel Dekker, 631-654.
Google Scholar
Read, D.J., 1997, Mycorrhizal fungi - the ties that bind. Nature 388: 517-518.
CAS
CrossRef
Google Scholar
Redecker, D., Szaro, T.M., Bowman, R.J., and Bruns, T.D., 2001, Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Mol. Ecol. 10: 1025-1034.
CAS
PubMed
CrossRef
Google Scholar
Repáþ, I., 2007, Ectomycorrhiza formation and growth of Picea abies seedlings inoculated with alginate-bead fungal inoculum in peat and bark compost substrates. Forestry: doi:10.1093/forestry/cpm036
Google Scholar
Riedlinger, J., Schrey, S.D., Tarkka, M.T., Hampp, R., Kapur, M., and Fiedler, H.P., 2006, Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. App. Environ. Microbiol. 72: 3550-3557.
CAS
CrossRef
Google Scholar
Rousseau, J.V.D., Sylvia, D.M., and Fox, A.J., 1994, Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol. 128: 639-644.
CrossRef
Google Scholar
Ruotsalainen, A.L., Tuomi, J., and Väre, H., 2002, A model for optimal mycorrhizal colo-nization along altitudinal gradients. Silva Fennica 36: 681-694.
Google Scholar
Sampangi, R., Perrin, R., and Le Tacon, F., 1986, Disease suppression and growth promotion of Norway spruce and Douglas-fir seedlings by the ectomycorrhizal fungus Laccaria laccata in forest nurseries. In: Gianinazzi-Pearson V., and Gianinazzi S., eds. Physio-logical and Genetical Aspects of Mycorrhizae. 1st Europ. Symp. Mycorrhizae. Institut National de la Recherche Agronomique, Paris, 799-806.
Google Scholar
Samson, J., and Fortin, J.A., 1986, Ectomycorrhizal fungi of Larix laricina and the inter-specific and intraspecific variation in response to temperature. Can. J. Bot. 64: 3020-3028.
CrossRef
Google Scholar
Sarand, I., Timonen, S., Nurmiaho-Lassila, E., Koivula, T., Haahtela, K., Romantschuk, M., and Sen, R., 1998, Microbial biofilms and catabolic plasmid harbouring degradatine fluorescent pseudomonads in Scots pine mycorrhizospheres developed on petleum contaminated soil. FEMS Microbiol. Ecol. 27: 115-126.
CAS
CrossRef
Google Scholar
Sarand, I., Timonen, S., Koivula, T., Peltola, R., Haahtela, K., Sen, R., and Romantschuk, M., 1999, Tolerance and biodegradation of m-toluate by Scots pine, a mycorrhizal fungus and fluorescent pseudomonads individually and under associative conditions. J. Appl. Micro-biol. 86: 817-826.
CAS
CrossRef
Google Scholar
Satomura, T., Nakatsubo, T., and Horikoshi, T., 2003, Estimation of the biomass of fine roots and mycorrhizal fungi: a case study in a Japanese red pine (Pinus densiflora) stand. J. For. Res. 8: 221-225.
CrossRef
Google Scholar
Satomura, T., Hashimoto, Y., Kinoshita, A., and Horikoshi, T., 2006a, Methods to study the role of ectomycorrhizal fungi in forest carbon cycling 1: introduction to the direct methods to quantify the fungal content in ectomycorrhizal fine roots. Root Res. 15: 119-124.
CrossRef
Google Scholar
Satomura, T., Hashimoto, Y., Kinoshita, A., and Horikoshi, T., 2006b, Methods to study the role of ectomycorrhizal fungi in forest carbon cycling 2: Ergosterol analysis method to quantify the fungal content in ectomycorrhizal fine root. Root Res. 15: 125-154.
Google Scholar
Schelkle, M., and Peterson, R.L., 1996, Suppression of common root pathogens by helper bacteria and ectomycorrhizal fungi in vitro. Mycorrhiza 6: 481-485.
CrossRef
Google Scholar
Schneider, B.U., Meyer, J., Schulze, E.-D., and Zech, W., 1989, Root and mycorrhizal deve-lopment in healthy and declining Norway spruce stand. In: Schulze E.-D., Lange O.L., and Oren R., eds. Forest Decline. Berlin, Springer, 370-391.
Google Scholar
Schrey, S.D., Schellhammer, M., Ecke, M., Hampp, R., and Tarkka, M.T., 2005, Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol. 168: 205-216.
CAS
PubMed
CrossRef
Google Scholar
Sell, J., Kayser, A., Schulin, R., and Brunner, I., 2005, Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. Plant Soil 277: 245-253.
CAS
CrossRef
Google Scholar
Sen, R., 2001, Multitrophic interactions between a Rhizoctonia sp., and mycorrhizal fungi affect Scots pine seedling performance in nursery soil. New Phytol. 152: 543-553.
CAS
CrossRef
Google Scholar
Simard, S.W., and Durall, D.M., 2004, Mycorrhizal networks: a review of their extent, function, and importance. Can. J. Bot. 82: 1140-1165.
CAS
CrossRef
Google Scholar
Smith, S.E., and Read, D.J., 1997, Mycorrhizal Symbiosis. 2nd edit. New York, Academic Press.
Google Scholar
Stankeviþienơ, D., and Peþiulytơ, D., 2004, Functioning of ectomycorrhizae and soil micro-fungi in deciduous forests situated along a pollution gradient next to a fertilizer factory. Pol. J. Environ. Stud. 13: 715-721.
Google Scholar
Stintzi, A., and Browse, J., 2000, The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. USA 97: 10625-10630.
CAS
PubMed
CrossRef
Google Scholar
Stotz, H.U., Bishop, J.G., Bergmann, C.W., Koch, M., Albersheim, P., Darvill, A.G., and Labavitch, J.M., 2000, Identification of target amino acids that affect interactions of fungal polygalacturonases and their plant inhibitors. Physiol. Mol. Plant Pathol. 56: 117-130.
CAS
CrossRef
Google Scholar
Strobel, N.E., and Sinclair, W.A., 1991a, Role of flavanolic wall infusions in the resistance induced by Laccaria bicolor to Fusarium oxysporum in primary roots of Douglas-fir. Phytopathology 81: 420-425.
CAS
CrossRef
Google Scholar
Strobel, N.E., and Sinclair, W.A., 1991b, Influence of temperature and pathogen aggressive-ness on biological control of Fusarium root rot by Laccaria bicolor in Douglas-fir. Phytopathology 81: 415-420.
CrossRef
Google Scholar
Sun, Y., and Fries, N., 1992, The effect of tree-root exudates on the growth rate of ectomycorrhizal and saprotrophic fungi. Mycorrhiza 1: 63-69.
CrossRef
Google Scholar
Svenson, S.E., Davies, F.T. and Meier, C.E., 1991, Ectomycorrhizae and drought acclimation influence water relations and growth of Loblolly Pine. Hort Sci. HJHSAR 26: 1406-1409.
Google Scholar
Sylvia, D.M., 1983, Role of Laccaria laccata in protecting primary roots of Douglas-fir from root rot. Plant Soil 71: 299-302.
CrossRef
Google Scholar
Tam P.C.F., 1995, Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5: 181-187.
CAS
CrossRef
Google Scholar
Tammi, H., Timonen, S., and Sen, R., 2001, Spatio-temporal colonization of Scots pine roots by introduced and indigenous ectomycorrhizal fungi in forest humus and nursery Sphagnum peat microcosms. Can. J. For. Res. 35: 1-12.
Google Scholar
Taniguchi, T., Kanzaki, N., Tamai, S., Yamanaka, N., and Futai, K., 2007, Does ecto-mycorrhizal community structure vary along a Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia) gradient? New Phytol. 173: 322-334.
PubMed
CrossRef
Google Scholar
Taniguchi, T., Kataoka, R., and Futai, K., 2008, Plant growth and nutrition in pine (Pinus thunbergii) seedlings and dehydrogenase and phosphatase activity of ectomycorrhizal root tips inoculated with seven individual ectomycorrhizal fungal species at high and low nitrogen conditions. Soil Biol. Biochem. 40: 1235-1243.
CAS
CrossRef
Google Scholar
Taylor, A.F.S., Gebauer, G., and Read, D.J., 2004, Uptake of nitrogen and carbon from double-labelled (15 N and 13 C) glycine by mycorrhizal pine seedlings. New Phytol. 164: 383-388.
CAS
CrossRef
Google Scholar
Tedersoo, L., Pellet, P., Urmas, Kõljalg, U., and Selosse, M.A., 2007, Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151: 206-217.
Google Scholar
Teste, F.P., Karst, J., Jones, M.D., Simard, S.W., and Durall, D.M., 2006, Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers. Mycorrhiza 17: 51-65. Ectomycorrhizae and their Importance285
Google Scholar
Tibbett, M., Sanders, F.E., and Cairney, J.W.G., 1998, The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol. Res. 102: 129-135.
CAS
CrossRef
Google Scholar
Tilman, D., 1985, The resource-ratio hypothesis of plant succession. Am. Nat. 125: 827-852.
CrossRef
Google Scholar
Tilman, D., 1987, Secondary succession and the pattern of plant dominance along experi-mental nitrogen gradients. Ecol. Monogr. 57: 189-214.
CrossRef
Google Scholar
Tommerup, I.C., Kuek, C., and Malajczuk, N., 1987, Ectomycorrhizal inoculum production and utilization in Australia. Proc. 7th. Amer. Conf. Mycorrhizae, Gainesville, Florida, pp. 293-295.
Google Scholar
Turnau, K., Kottke, I., Dexheimer, J., and Botton, B., 1994, Element distribution in mycelium of Pisolithus arrhizus treated with cadmium dust. Ann. Bot. 74: 137-142.
CAS
CrossRef
Google Scholar
Turnau, K., Kottke, I., and Drexheimer, J., 1996, Toxic elements filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycol. Res. 100: 16-22.
CAS
CrossRef
Google Scholar
van der Heijden, M. G. A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T. A., Wiemken, A., and Sanders, I.R., 1998, Mycorrhizal fungal diversity deter-mines plant biodiversity, ecosystem variability and productivity. Nature 396: 69-72.
CAS
CrossRef
Google Scholar
Vogt K.A., Grier C.C., Edmonds R.L., and Meier C.E., 1982, Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis [Dougl.] Forbes ecosystems in western Washington. Ecology 63: 370-380.
CrossRef
Google Scholar
Vogt, K.A., Vogt, D.J., and Bloomfield, J., 1998, Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200: 71-89.
CAS
CrossRef
Google Scholar
Walker, R.F., 2001, Growth and nutritional responses of containerized sugar and Jeffrey pine seedlings to controlled release fertilization and induced mycorrhization. For. Ecol. Manag. 149: 163-179.
CrossRef
Google Scholar
Walker, T.S., Bais, H.P., Grotewold, E., and Vivanco, J.M., 2003, Root exudation and rhizosphere biology. Plant Physiol. 132: 44-51.
CAS
PubMed
CrossRef
Google Scholar
Wallander, H., 2000, Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218: 249-256.
CAS
CrossRef
Google Scholar
Wallander, H., Nilsson, L.O., Hagerberg, D., and Bååth, E., 2001, Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol. 151: 753-760.
CAS
CrossRef
Google Scholar
Wallander, H., Göransson, H., and Rosengren, U., 2004, Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139: 89-97.
PubMed
CrossRef
Google Scholar
Wallander, H., Fossum, A., Rosengren, U., and Jones, H., 2005, Ectomycorrhizal fungal biomass in roots and uptake of P from apatite by Pinus sylvestris seedlings growing in forest soil with and without wood ash amendment. Mycorrhiza 15: 143-148.
PubMed
CrossRef
Google Scholar
Whipps, J.M., 2004, Prospects and limitations for mycorrhizals in biocontrol of root pathogens. Can. J. Bot. 82: 1198-1227.
CrossRef
Google Scholar
Wu, B., Nara, K., and Hogetsu, T., 2005, Genetic structure of Cenococcum geophilum populations in primary successional volcanic deserts on Mount Fuji as revealed by microsatellite markers. New Phytol. 165: 285-293.
CAS
PubMed
CrossRef
Google Scholar
Wu T., Sharda J.N., and Koide R.T., 2003, Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using a protein-tannin complex as an N source by red pine (Pinus resinosa). New Phytol. 159: 131-139.
CAS
CrossRef
Google Scholar