Skip to main content

Evolutionary Dynamics

  • Conference paper

Abstract

Evolutionary dynamics in finite populations reflects a balance between Darwinian selection and random drift. For a long time population structures were assumed to leave this balance unaffected provided that the mutants and residents have fixed fitness values. This result indeed holds for a certain (large) class of population structures or graphs. However, other structures can tilt the balance to the extend that either selection is eliminated and drift rules or drift is eliminated and only selection matters.

In nature, however, fitness is generally affected by interactions with other members of the population. This is of particular importance for the evolution of cooperation. The essence of this evolutionary conundrum is captured by social dilemmas: cooperators provide a benefit to the group at some cost to themselves, whereas defectors attempt to exploit the group by reaping the benefits without bearing the costs of cooperation. The most prominent game theoretical models to study this problem are the prisoner’s dilemma and the snowdrift game. In the prisoner’s dilemma, cooperators are doomed if interactions occur randomly. In structured populations, individuals interact only with their neighbors and cooperators may thrive by aggregating in clusters and thereby reducing exploitation by defectors. In finite populations, a surprisingly simple rule determines whether evolution favors cooperation: b > c k that is, if the benefits b exceed k-times the costs c of cooperation, where k is the (average) number of neighbors. The spatial prisoner’s dilemma has lead to the general belief that spatial structure is beneficial for cooperation. Interestingly, however, this no longer holds when relaxing the social dilemma and considering the snowdrift game. Due to the less stringent conditions, cooperators persist in populations with random interactions but spatial structure tends to be deleterious and may even eliminate cooperation altogether.

In many biological situations it seems more appropriate to assume a continuous range of cooperative investment levels instead of restricting the analysis to two a priori fixed strategic types. In the continuous prisoner’s dilemma cooperative investments gradually decrease and defection dominates just as in the traditional prisoner’s dilemma. In contrast, the continuous snowdrift game exhibits rich dynamics but most importantly provides an intriguing natural explanation for phenotypic diversification and the evolutionary origin of cooperators and defectors. Thus, selection may not always favor equal contributions but rather promote states where two distinct types co-exist — those that fully cooperate and those that exploit. In the context of human societies and cultural evolution this could be termed the Tragedy of the Commune because differences in contributions to a communal enterprise have significant potential for escalating conflicts on the basis of accepted notions of fairness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R. and Barabási, A.-L. (2002) Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 47–97.

    Article  ADS  Google Scholar 

  2. Barabasí, A.-L. and Albert, R. (1999) Emergence of scaling in random networks, Science 286, 509–512.

    Article  MathSciNet  Google Scholar 

  3. Bollobás, B. (1995) Random Graphs, New York, Academic.

    Google Scholar 

  4. Clutton-Brock, T. H., M. J. O’Riain, P. N. M. B., Gaynor, D., Kansky, R., Griffin, A. S., and Manser, M. (1999) Selfish sentinels in cooperative mammals, Science 284, 1640–1644.

    Article  ADS  Google Scholar 

  5. Clutton-Brock, T. H. and Parker, G. A. (1995) Punishment in animal societies, Nature 373, 209–216.

    Article  ADS  Google Scholar 

  6. Connor, R. C. (1996) Partner preferences in by-product mutualisms and the case of predator inspection in fish, Anim. Behav. 51, 451–454.

    Article  Google Scholar 

  7. Dawes, R. M. (1980) Social dilemmas, Ann. Rev. Psychol. 31, 169–193.

    Article  Google Scholar 

  8. Dieckmann, U. and Law, R. (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes, J. Math. Biol. 34, 579–612.

    Article  MATH  MathSciNet  Google Scholar 

  9. Doebeli, M. and Hauert, C. (2005) Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game, Ecol. Lett. 8, 748–766.

    Article  Google Scholar 

  10. Doebeli, M., Hauert, C., and Killingback, T. (2004) The evolutionary origin of cooperators and defectors, Science 306, 859–862.

    Article  ADS  Google Scholar 

  11. Dugatkin, L. A. (1996) Tit for tat, by-product mutualism and predator inspection: a reply to Connor, Anim. Behav. 51, 455–457.

    Article  Google Scholar 

  12. Flood, M. (1958) Some experimental games, Management Science 5, 5–26.

    Article  MATH  MathSciNet  Google Scholar 

  13. Geritz, S. A. H., Kisdi, E., Meszéna, G., and Metz, J. A. J. (1998) Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol. 12, 35–57.

    Article  Google Scholar 

  14. Greig, D. and Travisano, M. (2004) The Prisoner’s Dilemma and polymorphism in yeast SUC genes, Biol. Lett. 271, S25–S26.

    Google Scholar 

  15. Hamilton, W. D. (1964) The genetical evolution of social behaviour I, J. Theor. Biol. 7, 1–16.

    Article  Google Scholar 

  16. Hamilton, W. D. (1971) The geometry of the selfish herd, J. Theor. Biol. 31, 295–311.

    Article  Google Scholar 

  17. Hardin, G. (1968) The tragedy of the commons, Science 162, 1243–1248.

    Article  ADS  Google Scholar 

  18. Hauert, C. (2006) Spatial effects in social dilemmas, J. Theor. Biol. 240, 627–636.

    Article  MathSciNet  Google Scholar 

  19. Hauert, C. (2007) VirtualLabs: Interactive Tutorials on Evolutionary Game Theory, http://www.univie.ac.at/virtuallabs.

  20. Hauert, C., De Monte, S., Hofbauer, J., and Sigmund, K. (2002) Volunteering as red queen mechanism for cooperation in public goods games, Science 296, 1129–1132.

    Article  ADS  Google Scholar 

  21. Hauert, C. and Doebeli, M. (2004) Spatial structure often inhibits the evolution of cooperation in the Snowdrift game, Nature 428, 643–646.

    Article  ADS  Google Scholar 

  22. Hauert, C., Holmes, M., and Doebeli, M. (2006a) Evolutionary games and population dynamics: maintenance of cooperation in public goods games, Proc. R. Soc. Lond. B 273, 2565–2570.

    Article  Google Scholar 

  23. Hauert, C., Holmes, M., and Doebeli, M. (2006b) Evolutionary games and population dynamics: maintenance of cooperation in public goods games, Proc. R. Soc. Lond. B 273, 3131–3132.

    Article  Google Scholar 

  24. Hauert, C., Michor, F., Nowak, M., and Doebeli, M. (2006c) Synergy and discounting of cooperation in social dilemmas, J. Theor. Biol. 239, 195–202.

    Article  MathSciNet  Google Scholar 

  25. Hauert, C. and Szabó, G. (2005) Game theory and physics, Am. J. Phys. 73, 405–414.

    Article  ADS  Google Scholar 

  26. Hauert, C., Traulsen, A., Brandt, H., Nowak, M. A., and Sigmund, K. (2007) Via freedom to coercion: the emergence of costly punishment, Science 316, 1905–1907.

    Article  ADS  MathSciNet  Google Scholar 

  27. Hofbauer, J. and Sigmund, K. (1998) Evolutionary Games and Population Dynamics, Cambridge, Cambridge University Press.

    MATH  Google Scholar 

  28. Huang, A. S. and Baltimore, D. (1977) Comprehensive Virology, Vol. 10, Chapt. Defective Interfering Animal Viruses, pp. 73–116, New York, Plenum.

    Google Scholar 

  29. Karlin, S. and Taylor, H. M. (1975) First Course in Stochastic Processes, 2nd edition London, Academic.

    MATH  Google Scholar 

  30. Killingback, T. and Doebeli, M. (2002) The continuous prisoner’s dilemma and the evolution of cooperation through reciprocal altruism with variable investment, Am. Nat. 160, 421–438.

    Article  Google Scholar 

  31. Koonin, E. V., Wolf, Y. I., and Karev, G. P. (2006) Power Laws, Scale-Free Networks and Genome Biology, Molecular Biology Intelligence Unit, Springer, New York, NY.

    Google Scholar 

  32. Lieberman, E., Hauert, C., and Nowak, M. A. (2005) Evolutionary dynamics on graphs, Nature 455, 312–316.

    Article  ADS  Google Scholar 

  33. Magurran, A. E. and Higham, A. (1988) Information transfer across fish shoals under predator threat, Ethology 78, 153–158.

    Article  Google Scholar 

  34. Maruyama, T. (1970) Effective number of alleles in a subdivided population, Theor. Pop. Biol. 1, 273–306.

    Article  MathSciNet  Google Scholar 

  35. Matsuda, H., Ogita, N., Sasaki, A., and Sato, K. (1992) Statistical mechanics of populations, Prog. Theor. Phys. 88, 1035–1049.

    Article  ADS  Google Scholar 

  36. Maynard Smith, J. (1982) Evolution and the Theory of Games, Cambridge, Cambridge University Press.

    MATH  Google Scholar 

  37. Maynard Smith, J. and Price, G. (1973) The logic of animal conflict, Nature 246, 15–18.

    Article  Google Scholar 

  38. Maynard Smith, J. and Szathmáry, E. (1995) The Major Transitions in Evolution, Oxford, W. H. Freeman.

    Google Scholar 

  39. Metz, J. A. J., Geritz, S. A. H., Meszena, G., Jacobs, F. J. A., and van Heerwaarden, J. S. (1996) Adaptive dynamics: a geometrical study of the consequences of nearly faithful replication, In S. J. van Strien and S. M. Verduyn Lunel (eds.), Stochastic and Spatial Structures of Dynamical Systems, Amsterdam, North Holland, pp. 183–231.

    Google Scholar 

  40. Milinski, M. (1987) Tit for tat in sticklebacks and the evolution of cooperation, Nature 325, 433–435.

    Article  ADS  Google Scholar 

  41. Milinski, M. (1996) By-product mutualism, tit-for-tat and cooperative predator inspection: a reply to Connor, Anim. Behav. 51, 458–461.

    Article  Google Scholar 

  42. Milinski, M., Semmann, D., Krambeck, H.-J., and Marotzke, M. (2006) Stabilizing the Earths climate is not a losing game: supporting evidence from public goods experiments, Proc. Natl. Acad. Sci. USA 103, 3994–3998.

    Article  ADS  Google Scholar 

  43. Moran, P. A. P. (1962) The Statistical Processes of Evolutionary Theory, Oxford, UK, Clarendon.

    MATH  Google Scholar 

  44. Nash, J. (1951) Non-cooperative games, Annals of Mathematics 54, 286–299.

    Article  MathSciNet  Google Scholar 

  45. Neu, H. C. (1992) The Crisis in Antibiotic Resistance, Science 257, 1064–1073.

    Article  ADS  Google Scholar 

  46. Nowak, M. A. (2006) Evolutionary Dynamics, Cambridge MA, Harvard University Press.

    MATH  Google Scholar 

  47. Nowak, M. A. and May, R. M. (1992) Evolutionary Games and Spatial Chaos, Nature 359, 826–829.

    Article  ADS  Google Scholar 

  48. Nowak, M. A., Michor, F., and Iwasa, Y. (2003) The linear process of somatic evolution, Proc. Natl. Acad. Sci. USA 100, 14966–14969.

    Article  ADS  Google Scholar 

  49. Nowak, M. A., Sasaki, A., Taylor, C., and Fudenberg, D. (2004) Emergence of cooperation and evolutionary stability in finite populations, Nature 428, 646–650.

    Article  ADS  Google Scholar 

  50. Nowak, M. A. and Sigmund, K. (1998) Evolution of indirect reciprocity by image scoring, Nature 393, 573–577.

    Article  ADS  Google Scholar 

  51. Ohtsuki, H., Hauert, C., Lieberman, E., and Nowak, M. A. (2006) A simple rule for the evolution of cooperation on graphs and social networks, Nature 441, 502–505.

    Article  ADS  Google Scholar 

  52. Pitcher, T. (1992) Who dares, wins: the function and evolution of predator inspection behavior in shoaling fish, Neth. J. Zool. 42, 371–391.

    Article  Google Scholar 

  53. Poundstone, W. (1992) Prisoner’s Dilemma, New York, Doubleday.

    Google Scholar 

  54. Rainey, P. B. and Rainey, K. (2003) Evolution of cooperation and conflict in experimental bacterial populations, Nature 425, 72–74.

    Article  ADS  Google Scholar 

  55. Saunders, C. D. and Hausfater, G. (1988) The functional significance of baboon grooming behavior, Annals N. Y. Acad. Sci. 525, 430–432.

    Article  ADS  Google Scholar 

  56. Slatkin, M. (1981) Fixation probabilities and fixation times in a subdivided population, Evolution 35, 477–488.

    Article  Google Scholar 

  57. Stammbach, E. and Kummer, H. (1982) Individual contributions to a dyadic interaction: an analysis of baboon grooming, Anim. Behav. 30, 964–971.

    Article  Google Scholar 

  58. Sugden, R. (1986) The Economics of Rights, Co-operation and Welfare, Oxford and New York, Blackwell.

    Google Scholar 

  59. Szabó, G. and Hauert, C. (2002a) Evolutionary prisoner’s dilemma with optional participation, Phys. Rev. E 66, 062903.

    Article  ADS  MathSciNet  Google Scholar 

  60. Szabó, G. and Hauert, C. (2002b) Phase transitions and volunteering in spatial public goods games, Phys. Rev. Let. 89, 118101.

    Article  ADS  Google Scholar 

  61. Taylor, C., Iwasa, Y., and Nowak, M. A. (2006) A symmetry of fixation times in evolutionary dynamics, J. Theor. Biol. 243, 245–251.

    Article  MathSciNet  Google Scholar 

  62. Taylor, P. D., Day, T., and Wild, G. (2007) Evolution of cooperation in a finite homogeneous graph, Nature. 447, 469–472.

    Article  ADS  Google Scholar 

  63. Traulsen, A., Claussen, J. C., and Hauert, C. (2005) Coevolutionary dynamics: from finite to infinite populations, Phys. Rev. Lett. 95, 238701.

    Article  ADS  Google Scholar 

  64. Trivers, R. L. (1971) The evolution of reciprocal altruism, Q. Rev. Biol. 46, 35–57.

    Article  Google Scholar 

  65. Turner, P. E. and Chao, L. (1999) Prisoner’s dilemma in an RNA virus, Nature 398, 441–443.

    Article  ADS  Google Scholar 

  66. Turner, P. E. and Chao, L. (2003) Escape from prisoner’s dilemma in RNA phage Φ6, Am. Nat. 161, 497–505.

    Article  Google Scholar 

  67. van Baalen, M. and Rand, D. A. (1998) The unit of selection in viscous populations and the evolution of altruism, J. Theor. Biol. 193, 631–648.

    Article  Google Scholar 

  68. Velicer, G. J., Kroos, L., and Lenski, R. E. (2000) Developmental cheating in the social bacterium Myxococcus xanthus, Nature 404, 598–601.

    Article  ADS  Google Scholar 

  69. Vogelstein, B. and Kinzler, K. W. (1998) The Genetic Basis of Human Cancer, Toronto, McGraw-Hill.

    Google Scholar 

  70. Watts, D. J. and Strogatz, S. H. (1998) Collective dynamics of ‘small world’ networks, Nature 393, 440–442.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Hauert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Hauert, C. (2008). Evolutionary Dynamics. In: Skjeltorp, A.T., Belushkin, A.V. (eds) Evolution from Cellular to Social Scales. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8761-5_3

Download citation

Publish with us

Policies and ethics