Skip to main content

The von Neumann Triple Point Paradox

  • Chapter
Partial Differential Equations

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 16))

  • 2772 Accesses

Summary

We describe the problem of weak shock reflection off a wedge and discuss the triple point paradox that arises. When the shock is sufficiently weak and the wedge is thin, Mach reflection appears to be observed but is impossible according to what von Neumann originally showed in 1943. We summarize some recent numerical results for weak shock reflection problems for the unsteady transonic small disturbance equations, the nonlinear wave system, and the Euler equations. Rather than finding a standard but mathematically inadmissible Mach reflection with a shock triple point, the solutions contain a complex structure: there is a sequence of triple points and supersonic patches in a tiny region behind the leading triple point, with an expansion fan originating at each triple point. The sequence of patches may be infinite, and we refer to this structure as Guderley Mach reflection. The presence of the expansion fans at the triple points resolves the paradox. We describe some recent experimental evidence which is consistent with these numerical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Brio and J. K. Hunter. Mach reflection for the two-dimensional Burgers equation. Phys. D, 60:194–207, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  2. W. Bleakney and A. H. Taub. Interaction of shock waves. Rev. Modern Physics, 21:584–605, 1949.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. R. Courant and K. O. Friedrichs. Supersonic Flow and Shock Waves. Springer, 1976.

    Google Scholar 

  4. P. Colella and L. F. Henderson. The von Neumann paradox for the diffraction of weak shock waves. J. Fluid Mech., 213:71–94, 1990.

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Čanić and B. L. Keyfitz. Quasi-one-dimensional Riemann problems and their role in self-similar two-dimensional problems. Arch. Rational Mech. Anal., 144:233–258, 1998.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. S. Čanić, B. L. Keyfitz, and E. H. Kim. Mixed hyperbolic-elliptic systems in self-similar flows. Bol. Soc. Bras. Mat., 32:1–23, 2001.

    Article  Google Scholar 

  7. S. Čanić, B. L. Keyfitz, and E. H. Kim. Free boundary problems for nonlinear wave systems: Mach stems for interacting shocks. SIAM J. Math. Anal., 37:1947–1977, 2005.

    Google Scholar 

  8. K. G. Guderley. Considerations of the structure of mixed subsonic-supersonic flow patterns. Air Material Command Tech. Report, F-TR-2168-ND, ATI No. 22780, GS-AAF-Wright Field 39, U.S. Wright-Patterson Air Force Base, Dayton, Ohio, October 1947.

    Google Scholar 

  9. K. G. Guderley. The Theory of Transonic Flow. Pergamon Press, Oxford, 1962.

    MATH  Google Scholar 

  10. J. K. Hunter and M. Brio. Weak shock reflection. J. Fluid Mech., 410:235–261, 2000.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. L. F. Henderson. On a class of multi-shock intersections in a perfect gas. Aero. Q., 17:1–20, 1966.

    Google Scholar 

  12. L. F. Henderson. Regions and boundaries for diffracting shock wave systems. Z. Angew. Math. Mech., 67:73–86, 1987.

    Article  Google Scholar 

  13. J. K. Hunter and A. M. Tesdall. Weak shock reflection. In D. Givoli, M. Grote, and G. Papanicolaou, editors, A Celebration of Mathematical Modeling. Kluwer Academic Press, New York, 2004.

    Google Scholar 

  14. B. L. Keyfitz and M. C. Lopes Filho. A geometric study of shocks in equations that change type. J. Dynam. Differential Equations, 6:351–393, 1994.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. J. von Neumann. Oblique reflection of shocks. Explosives Research Report 12, Bureau of Ordinance, 1943.

    Google Scholar 

  16. J. von Neumann. Collected Works, Vol. 6. Pergamon Press, New York, 1963.

    Google Scholar 

  17. R. D. Richtmeyer. Principles of Mathematical Physics, Vol. 1. Springer, 1981.

    Google Scholar 

  18. B. Skews and J. Ashworth. The physical nature of weak shock wave reflection. J. Fluid Mech., 542:105–114, 2005.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. J. Sternberg. Triple-shock-wave intersections. Phys. Fluids, 2:179–206, 1959.

    Article  MATH  ADS  Google Scholar 

  20. A. Sasoh, K. Takayama, and T. Saito. A weak shock wave reflection over wedges. Shock Waves, 2:277–281, 1992.

    Article  ADS  Google Scholar 

  21. A. M. Tesdall and J. K. Hunter. Self-similar solutions for weak shock reflection. SIAM J. Appl. Math., 63:42–61, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. G. Tabak and R. R. Rosales. Focusing of weak shock waves and the von Neumann paradox of oblique shock reflection. Phys. Fluids, 6:1874–1892, 1994.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. A. M. Tesdall, R. Sanders, and B. L. Keyfitz. The triple point paradox for the nonlinear wave system. SIAM J. Appl. Math., 67:321–336, 2006.

    Article  MathSciNet  Google Scholar 

  24. E. Vasil’ev and A. Kraiko. Numerical simulation of weak shock diffraction over a wedge under the von Neumann paradox conditions. Comput. Math. Math. Phys., 39:1335–1345, 1999.

    MATH  MathSciNet  Google Scholar 

  25. A. Zakharian, M. Brio, J. K. Hunter, and G. Webb. The von Neumann paradox in weak shock reflection. J. Fluid Mech., 422:193–205, 2000.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Sanders, R., Tesdall, A.M. (2008). The von Neumann Triple Point Paradox. In: Glowinski, R., Neittaanmäki, P. (eds) Partial Differential Equations. Computational Methods in Applied Sciences, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8758-5_6

Download citation

Publish with us

Policies and ethics