Skip to main content

An Operator Splitting Method for Pricing American Options

  • Chapter

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 16))

Summary

Pricing American options using partial (integro-)differential equation based methods leads to linear complementarity problems (LCPs). The numerical solution of these problems resulting from the Black-Scholes model, Kou’s jump-diffusion model, and Heston’s stochastic volatility model are considered. The finite difference discretization is described. The solutions of the discrete LCPs are approximated using an operator splitting method which separates the linear problem and the early exercise constraint to two fractional steps. The numerical experiments demonstrate that the prices of options can be computed in a few milliseconds on a PC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Andersen and J. Andreasen. Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res., 4:231–262, 2000.

    Article  Google Scholar 

  2. A. Almendral and C. W. Oosterlee. Numerical valuation of options with jumps in the underlying. Appl. Numer. Math., 53:1–18, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  3. Y. Achdou and O. Pironneau. Computational methods for option pricing, volume 30 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA, 2005.

    Google Scholar 

  4. D. S. Bates. Jumps and stochastic volatility: Exchange rate processes implicit Deutsche mark options. Review Financial Stud., 9:69–107, 1996.

    Article  Google Scholar 

  5. A. Brandt and C. W. Cryer. Multigrid algorithms for the solution of linear complementarity problems arising from free boundary problems. SIAM J. Sci. Statist. Comput., 4:655–684, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Black and M. Scholes. The pricing of options and corporate liabilities. J. Polit. Econ., 81:637–654, 1973.

    Article  Google Scholar 

  7. M. J. Brennan and E. S. Schwartz. The valuation of American put options. J. Finance, 32:449–462, 1977.

    Article  Google Scholar 

  8. N. Clarke and K. Parrott. Multigrid for American option pricing with stochastic volatility. Appl. Math. Finance, 6:177–195, 1999.

    Article  MATH  Google Scholar 

  9. C. W. Cryer. The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control, 9:385–392, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Cont and P. Tankov. Financial modelling with jump processes. Chapman & Hall/CRC, Boca Raton, FL, 2004.

    MATH  Google Scholar 

  11. R. Cont and E. Voltchkova. A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal., 43:1596–1626, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. d’Halluin, P. A. Forsyth, and G. Labahn. A penalty method for American options with jump diffusion processes. Numer. Math., 97:321–352, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  13. Y. d’Halluin, P. A. Forsyth, and K. R. Vetzal. Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal., 25:87–112, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Duffie, J. Pan, and K. Singleton. Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68(6):1343–1376, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  15. B. Dupire. Pricing with a smile. Risk, 7:18–20, 1994.

    Google Scholar 

  16. J.-P. Fouque, G. Papanicolaou, and K. R. Sircar. Derivatives in financial markets with stochastic volatility. Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  17. P. A. Forsyth and K. R. Vetzal. Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput., 23:2095–2122, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. B. Giles and R. Carter. Convergence analysis of Crank-Nicolson and Rannacher time-marching. J. Comput. Finance, 9:89–112, 2006.

    Google Scholar 

  19. R. Glowinski. Finite element methods for incompressible viscous flow. In P. G. Ciarlet and J.-L. Lions, editors, Handbook of Numerical Analysis, Vol. IX, pages 3–1176. North-Holland, Amsterdam, 2003.

    Google Scholar 

  20. S. Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Stud., 6:327–343, 1993.

    Article  Google Scholar 

  21. M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim., 13:865–888, 2003.

    Article  MATH  Google Scholar 

  22. K. Ito and K. Kunisch. Parabolic variational inequalities: The Lagrange multiplier approach. J. Math. Pures Appl., 85:415–449, 2006.

    MATH  MathSciNet  Google Scholar 

  23. S. Ikonen and J. Toivanen. Operator splitting methods for American option pricing. Appl. Math. Lett., 17:809–814, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Ikonen and J. Toivanen. Operator splitting methods for pricing American options with stochastic volatility. Reports of the Department of Mathematical Information Technology, Series B, Scientific Computing B11/2004, University of Jyväskylä, Jyväskylä, 2004.

    Google Scholar 

  25. S. Ikonen and J. Toivanen. Componentwise splitting methods for pricing American options under stochastic volatility. Reports of the Department of Mathematical Information Technology, Series B, Scientific Computing B7/2005, University of Jyväskylä, Jyväskylä, 2005.

    Google Scholar 

  26. S. Ikonen and J. Toivanen. Componentwise splitting methods for pricing American options under stochastic volatility. Int. J. Theor. Appl. Finance, 10(2):331–361, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  27. K. Ito and J. Toivanen. Lagrange multiplier approach with optimized finite difference stencils for pricing American options under stochastic volatility. Reports of the Department of Mathematical Information Technology, Series B, Scientific Computing B6/2006, University of Jyväskylä, Jyväskylä, 2006.

    Google Scholar 

  28. R. Kangro and R. Nicolaides. Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal., 38:1357–1368, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  29. S. G. Kou. A jump-diffusion model for option pricing. Management Sci., 48:1086–1101, 2002.

    Article  Google Scholar 

  30. P. Lötstedt, J. Persson, L. von Sydow, and J. Tysk. Space-time adaptive finite difference method for European multi-asset options. Comput. Math. Appl., 53(8):1159–1180, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  31. R. C. Merton. Theory of rational option pricing. Bell J. Econom. and Management Sci., 4:141–183, 1973.

    Article  MathSciNet  Google Scholar 

  32. R. Merton. Option pricing when underlying stock returns are discontinuous. J. Financial Econ., 3:125–144, 1976.

    Article  MATH  Google Scholar 

  33. A.-M. Matache, C. Schwab, and T. P. Wihler. Fast numerical solution of parabolic integrodifferential equations with applications in finance. SIAM J. Sci. Comput., 27:369–393, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  34. T. A. Manteuffel and A. B. White, Jr. The numerical solution of second-order boundary value problems on nonuniform meshes. Math. Comp., 47:511–535, 1986.

    Google Scholar 

  35. C. W. Oosterlee. On multigrid for linear complementarity problems with application to American-style options. Electron. Trans. Numer. Anal., 15:165–185, 2003.

    MATH  MathSciNet  Google Scholar 

  36. R. Rannacher. Finite element solution of diffusion problems with irregular data. Numer. Math., 43:309–327, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  37. C. Reisinger and G. Wittum. On multigrid for anisotropic equations and variational inequalities: pricing multi-dimensional European and American options. Comput. Vis. Sci., 7(3–4):189–197, 2004.

    MATH  MathSciNet  Google Scholar 

  38. J. Toivanen. Numerical valuation of European and American options under Kou’s jump-diffusion model. Reports of the Department of Mathematical Information Technology, Series B, Scientific Computing B11/2006, University of Jyväskylä, Jyväskylä, 2006.

    Google Scholar 

  39. D. Tavella and C. Randall. Pricing financial instruments: The finite difference method. John Wiley & Sons, Chichester, 2000.

    Google Scholar 

  40. P. Wilmott. Derivatives. John Wiley & Sons, Chichester, 1998.

    Google Scholar 

  41. R. Zvan, P. A. Forsyth, and K. R. Vetzal. Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math., 91:199–218, 1998.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Ikonen, S., Toivanen, J. (2008). An Operator Splitting Method for Pricing American Options. In: Glowinski, R., Neittaanmäki, P. (eds) Partial Differential Equations. Computational Methods in Applied Sciences, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8758-5_16

Download citation

Publish with us

Policies and ethics