Skip to main content

Reduced-Order Modelling of Dispersion

  • Chapter
Partial Differential Equations

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 16))

Summary

We present low complexity models for the transport of passive scalars for environmental applications. Multi-level analysis has been used with a reduction in dimension of the solution space at each level. Similitude solutions are used in a non-symmetric metric for the transport over long distances. Model parameters identification is based on data assimilation. The approach does not require the solution of any PDE and, therefore, is mesh free. The model also permits to access the solution in one point without computing the solution over the whole domain. Sensitivity analysis is used for risk analysis and also for the identification of the sources of an observed pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alauzet, P.-L. George, P. Frey, and B. Mohammadi. Transient fixed point based unstructured mesh adaptation. Internat. J. Numer. Methods Fluids, 43(6):729–745, 2002.

    Article  ADS  MathSciNet  Google Scholar 

  2. ArcGIS. Geographic information system, 2006. http://www.esri.com/software/arcgis.

  3. H. Borouchaki, P.-L. George, and B. Mohammadi. Delaunay mesh generation governed by metric specifications. Finite Element in Analysis and Design, 2:85–109, 1997.

    Article  MathSciNet  Google Scholar 

  4. J. M. Brun. Modélisation à complexité réduite de la dérive. PhD thesis, University of Montpellier, 2006.

    Google Scholar 

  5. G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, editors. Automatic differentiation of algorithms: From simulation to optimization. Number 50 in Lect. Notes Comput. Sci. Eng. Springer, Berlin, 2001. Selected papers from the AD2000 Conference, Nice, France, June 2000.

    Google Scholar 

  6. Ph. Ciarlet. The finite element method for elliptic problems. North-Holland, 1978.

    Google Scholar 

  7. J. Cousteix. Turbulence et couche limite. Cepadues publishers, 1989.

    Google Scholar 

  8. J. Finnigan. Turbulence in plant canopies. Annu. Rev. Fluid Mech., 32:519–571, 2000.

    Article  ADS  Google Scholar 

  9. A. Griewank. Computational differentiation. Springer, New york, 2001.

    Google Scholar 

  10. F. Hecht and B. Mohammadi. Mesh adaptation by metric control for multi-scale phenomena and turbulence. AIAA paper 1997-0859, 1997.

    Google Scholar 

  11. B. Ivorra, D. E. Hertzog, B. Mohammadi, and J. G. Santiago. Semi-deterministic and genetic algorithms for global optimization of microfluidic protein-folding devices. Internat. J. Numer. Methods Engrg., 66(2):319–333, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Ivorra. Semi-deterministic global optimization. PhD thesis, University of Montpellier, 2006.

    Google Scholar 

  13. B. Mohammadi and O. Pironneau. Analysis of the k-epsilon turbulence model. Wiley, 1994.

    Google Scholar 

  14. B. Mohammadi and O. Pironneau. Applied shape optimization for fluids. Oxford University Press, 2001.

    Google Scholar 

  15. B. Mohammadi and G. Puigt. Wall functions in computational fluid dynamics. Comput. & Fluids, 40(3):2101–2124, 2006.

    Google Scholar 

  16. B. Mohammadi and J. H. Saiac. Pratique de la simulation numérique. Dunod, Paris, 2003.

    Google Scholar 

  17. M. R. Raupach and A. S. Thom. Turbulence in and above plant canopies. Annu. Rev. Fluid Mech., 13:97–129, 1981.

    Article  ADS  Google Scholar 

  18. J. Simpson. Gravity currents in the environment and laboratory. Cambridge University Press, 2nd edition, 1997.

    Google Scholar 

  19. B. Sumner. A modeling study of several aspects of canopy flow. Monthly Weather Review, 99(6):485–493, 1971.

    Article  Google Scholar 

  20. K. Veroy and A. Patera. Certified real-time solution of the parametrized steady incompressible Navier–Stokes equations: Rigorous reduced-basis a posteriori error bounds. Internat. J. Numer. Methods Fluids, 47(2):773–788, 2005.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Brun, JM., Mohammadi, B. (2008). Reduced-Order Modelling of Dispersion. In: Glowinski, R., Neittaanmäki, P. (eds) Partial Differential Equations. Computational Methods in Applied Sciences, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8758-5_14

Download citation

Publish with us

Policies and ethics