Skip to main content

Human milk contains numerous components, which have been linked to immune functions. Initially it was easy to recognise such constituents as classical members of the immune system, for example antibodies and lymphocytes, but today the list is very long. This is due to the fact that we have learnt for one thing that certain nutrients, for instance polyunsaturated fatty acids, and immune components often cooperate and/or direct each other, as exemplified below. Another reason is that the central nervous system and the immune system, which developmentally have different origins, in fact are in several modes intertwined in their functions. This may be illustrated by the fact that hormones such as leptin and growth hormone have a cytokine structure and that certain cytokines such as the pro-inflammatory IL-1β, TNF-α and IL-6 activate the HPA stress axis and induce production of glucocorticosteroids1, as well as leptin.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koldovsky O (1994) Hormonally active peptides in human milk. Acta Paediatr Suppl 402:89–93.

    Google Scholar 

  2. Lord G (2002) Role of leptin in immunology. Nutr Rev 60:S35–38; discussion S68–84, 5–7.

    Article  PubMed  Google Scholar 

  3. Hanson LÅ (in press) Anti-inflammatory, energy-saving defence of the infant via breastfeeding. The Nutricia International Award. J Ped Gastr Nutr.

    Google Scholar 

  4. Stoney RM, Woods RK, Hosking CS, Hill DJ, Abramson MJ, Thien FC (2004) Maternal breast milk long-chain n-3 fatty acids are associated with increased risk of atopy in breastfed infants. Clin Exp Allergy 34:194–200.

    Article  PubMed  CAS  Google Scholar 

  5. Businco L, Ioppi M, Morse NL, Nisini R, Wright S (1993) Breast milk from mothers of children with newly developed atopic eczema has low levels of long chain polyunsaturated fatty acids. J Allergy Clin Immunol 91:1134–1139.

    Article  PubMed  CAS  Google Scholar 

  6. Duchen K, Casas R, Fageras-Bottcher M, Yu G, Bjorksten B (2000) Human milk polyunsaturated long-chain fatty acids and secretory immunoglobulin A antibodies and early childhood allergy. Pediatr Allergy Immunol 11:29–39.

    Article  PubMed  CAS  Google Scholar 

  7. Yu G, Duchen K, Bjorksten B (1998) Fatty acid composition in colostrum and mature milk from non-atopic and atopic mothers during the first 6 months of lactation. Acta Paediatr 87:729–736.

    Article  PubMed  CAS  Google Scholar 

  8. Korotkova M, Telemo E, Hanson LÅ, Strandvik B (2004) Modulation of neonatal immunological tolerance to ovalbumin by maternal essential fatty acid intake. Pediatr Allergy Immunol 15:112–122.

    Article  PubMed  Google Scholar 

  9. Korotkova M, Telemo E, Hanson LA, Strandvik B (2004) The ratio of n-6 and n-3 essential fatty acids in maternal milk influences the induction of neonatal immunological tolerance to ovalbumin. Clin Exp Immunol 137:237–244.

    Article  PubMed  CAS  Google Scholar 

  10. Lonnroth I, Lange S (1984) Purification and characterization of a hormone-like factor which inhibits cholera secretion. FEBS Lett 177:104–108.

    Article  PubMed  CAS  Google Scholar 

  11. Lange S, Lonnroth I (2001) The antisecretory factor: synthesis, anatomical and cellular distribution, and biological action in experimental and clinical studies. Int Rev Cytol 210:39–75.

    Article  PubMed  CAS  Google Scholar 

  12. Bjorck S, Bosaeus I, Ek E et al (2000) Food induced stimulation of the antisecretory factor can improve symptoms in human inflammatory bowel disease: a study of a concept. Gut 46:824–829.

    Article  PubMed  CAS  Google Scholar 

  13. Eriksson A, Shafazand M, Jennische E, Lange S (2003) Effect of antisecretory factor in ulcerative colitis on histological and laborative outcome: a short period clinical trial. Scand J Gastroenterol 38:1045–1049.

    Article  PubMed  CAS  Google Scholar 

  14. Hanson LA, Lonnroth I, Lange S, Bjersing J, Dahlgren UI (2000) Nutrition resistance to viral propagation. Nutr Rev 58:S31–37.

    Article  PubMed  CAS  Google Scholar 

  15. Svensson K, Lange S, Lönnroth I, Widström A-M, Hanson, LÅ (2004) Induction of anti-secretory factor in human milk may prevent mastitis. Acta Paediatr 93:1228–1231.

    Article  PubMed  CAS  Google Scholar 

  16. Haversen L, Kondori N, Baltzer L et al (unpublished) Structure-microbicidal activity relationship of synthetic fragments derived from the surface exposed anti-bacterial alfa-helix beta-sheet region of human lactoferrin.

    Google Scholar 

  17. Haversen LA, Baltzer L, Dolphin G, Hanson LA Mattsby-Baltzer I (2003) Anti-inflammatory activities of human lactoferrin in acute dextran sulphate-induced colitis in mice. Scand J Immunol 57:2–10.

    Article  PubMed  CAS  Google Scholar 

  18. Haversen L, Ohlsson BG, Hahn-Zoric M, Hanson LA, Mattsby-Baltzer I (2002) Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B. Cell Immunol 220:83–95.

    Article  PubMed  CAS  Google Scholar 

  19. Haversen LA, Engberg I, Baltzer L, Dolphin G, Hanson LA, Mattsby-Baltzer I (2000) Human lactoferrin and peptides derived from a surface-exposed helical region reduce experimental Escherichia coli urinary tract infection in mice. Infect Immun 68:5816–5823.

    Article  PubMed  CAS  Google Scholar 

  20. Mårild S, Hansson S, Jodal U, Oden A, Svedberg K (2004) Protective effect of breastfeeding against urinary tract infections. Acta Paediatrica 93:164–168.

    Article  PubMed  Google Scholar 

  21. Hanson LA (2004) Protective effects of breastfeeding against urinary tract infections. Acta Paediatrica 93:154–156.

    Article  PubMed  CAS  Google Scholar 

  22. Kanyshkova TG, Buneva VN, Nevinsky GA (2001) Lactoferrin and its biological functions. Biochemistry (Mosc) 66:1–7.

    Article  CAS  Google Scholar 

  23. Banasaz M, Hanson LÅ, Midtvedt T, Norin E (unpublished) Dietary nucleotides increase weight gain and enhance intestinal rate of mitosis in germfree rats.

    Google Scholar 

  24. Moisei M, Håversen L, Nitu F, Mattsby-Baltzer I, Hanson LÅ, Motas C (unpublished), Human lactoferrin has properties similar to a heat shock protein.

    Google Scholar 

  25. Hanson LÅ (2004) Immunobiology of Human Milk. How Breastfeeding Protects Babies. Amarillo, TX, USA: Pharmasoft Publ.

    Google Scholar 

  26. Ochoa TJ, Noguera-Obenza M, Ebel F, Guzman CA, Gomez HF, Cleary, TG (2003) Lactoferrin impairs type III secretory system function in enteropathogenic Escherichia coli. Infect Immun 71:5149–5155.

    Article  PubMed  CAS  Google Scholar 

  27. Hendrixson DR, Qii J, Shewry SC et al (2003) Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites. Mol Microbiol 47:607–617.

    Article  PubMed  CAS  Google Scholar 

  28. Newburg DS (1999) Human milk glycoconjugates that inhibit pathogens. Curr Med Chem 6:117–127.

    PubMed  CAS  Google Scholar 

  29. Garofalo RP, Goldman AS (1999) Expression of functional immunomodulatory and anti-inflammatory factors in human milk. Clin Perinatol 26:361–377.

    PubMed  CAS  Google Scholar 

  30. Ashraf RN, Jalil F, Zaman S, et al (1991) Breastfeeding and protection against neonatal sepsis in a high risk population. Arch Dis Child 66:488–490.

    Article  PubMed  CAS  Google Scholar 

  31. Roux M, McWilliams M, Phillips-Quagliata J, Weisz-Carrington P, Lamm M (1977) Origin of IgA-secreting plasma cells in the mammary gland. J Exp Med 146:1311–1322.

    Article  PubMed  CAS  Google Scholar 

  32. Carlsson B, Ahlstedt S, Hanson L, Lidin-Janson G, Lindblad B, Sultana S (1976) Escherichia coli O antibody content in milk from healthy Swedish mothers and mothers from a very low socio-economic group of a developing country. Acta Paediatr Scand 65:417–423.

    Article  PubMed  CAS  Google Scholar 

  33. Carlsson B, Kaijser B, Ahlstedt S, Gothefors L, Hansson LA (1982) Antibodies against Escherichia coli capsular (K) antigens in human milk and serum. Their relation on the E. coli gut flora of the mother and neonate. Acta Paediatr Scand 71:313–318.

    Article  PubMed  CAS  Google Scholar 

  34. Adlerberth I, Carlsson B, de Man P et al (1991) Intestinal colonization with enterobacteriaceae in Pakistani and Swedish hospital-delivered infants. Acta Paediatr Scand 80:602–610.

    Article  PubMed  CAS  Google Scholar 

  35. Adlerberth I, Hanson LÅ Wold AE (1999) Ontogeny of the intestinal flora. In: Development of the Gastrointestinal Tract (IR Sanderson and WA Walker eds). Hamilton, Ontario: BC Dexter Inc. pp. 279–292.

    Google Scholar 

  36. Adlerberth I, Jalil F, Carlsson B et al (1998) High turnover rate of Escherichia coli strains in the intestinal flora of infants in Pakistan. Epidemiol Infect 121:587–598.

    Article  PubMed  CAS  Google Scholar 

  37. Nowrouzian F, Monstein H-J, Wold AE, Adlerberth I (2005) Effect of human milk on type 1 and P-fimbrial mRNA expression in intestinal Escherichia coli strains. Lett Appl Microbiol 40:74–80.

    Article  PubMed  CAS  Google Scholar 

  38. Nowrouzian F, Adlerberth I, Wold AE, Friman V (submitted) The Escherichia coli mannose-specific adhesin, which binds to IgA carbohydrate, is a colonization factor in the human large intestine.

    Google Scholar 

  39. Bollinger RR, Everett ML, Palestrant D, Love SD, Lin SS, Parker W (2003) Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology 109:580–587.

    Article  PubMed  CAS  Google Scholar 

  40. Mellander L, Carlsson B, Hanson LÅ (1986) Secretory IgA and IgM antibodies to E.coli and poliovirus type 1 antigens occur in amniotic fluid, meconium and saliva from newborns. A neonatal immune response without antigenic exposure — an expression of anti-idiotypic induction? Clin Exp Immunol 63:555–561.

    PubMed  CAS  Google Scholar 

  41. Hahn-Zoric M, Carlsson B, Björkander J, Osterhaus ADME, Mellander L, Hanson LÅ (1992) Presence of non-maternal antibodies in newborns of mothers with antibody deficiencies. Pediatr Res 32:150–154.

    Article  PubMed  CAS  Google Scholar 

  42. Hahn-Zoric M, Carlsson B, Jeansson S et al (1993) Anti-idiotypic antibodies to poliovirus in commercial immunoglobulin, human serum and human milk. Pediatr Res 33:475–480.

    Article  PubMed  CAS  Google Scholar 

  43. Lundin BS, Dahlman-Hoglund A, Pettersson I, Dahlgren UI, Hanson LA, Telemo E (1999) Antibodies given orally in the neonatal period can affect the immune response for two generations: evidence for active maternal influence on the newborn’s immune system. Scand J Immunol 50:651–656.

    Article  PubMed  CAS  Google Scholar 

  44. Svanborg C, Ågerstam H, Aronson A et al (2003) HAMLET kills tumor cells by an apoptosis-like mechanism — cellular, molecular and therapeutic aspects. Adv Cancer Res 88:1–29.

    Article  PubMed  CAS  Google Scholar 

  45. Gustafsson L, Leijonhufvud I, Aronsson A, Mossberg AK, Svanborg C (2004) Treatment of skin papillomas with topical alpha-lactalbumin-oleic acid. N Engl J Med 350:2663–2672.

    Article  PubMed  CAS  Google Scholar 

  46. Fischer W, Gustafsson L, Mossberg AK et al (2004) Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival. Cancer Res 64:2105–2112.

    Article  PubMed  CAS  Google Scholar 

  47. Collaborative Group on Hormonal Factors in Breast Cancer (2002) Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360:187–195.

    Article  Google Scholar 

  48. Davis K (2001) Breastfeeding and chronic disease in childhood and adolescence. In: Pediatr Clin North Am pp. 125–141.

    Google Scholar 

  49. Hahn-Zoric M, Fulconis F, Minoli I et al (1990) Antibody responses to parenteral and oral vaccines are impaired by conventional and low protein formulas as compared to breast-feeding. Acta Paediatr Scand 79:1137–1142.

    PubMed  CAS  Google Scholar 

  50. Pabst H, Grace M, Godel J, Cho H, Spady D (1989) Effect on breast-feeding on antibody response to BCG vaccination. Lancet I:295–297.

    Article  Google Scholar 

  51. Pabst HF, Spady DW (1990) Effect of breast-feeding on antibody response to conjugate vaccine. Lancet 336:269–270.

    Article  PubMed  CAS  Google Scholar 

  52. Pickering LK, Granoff DM, Erickson JR et al (1998) Modulation of the immune system by human milk and infant formula containing nucleotides. Pediatrics 101:242–249.

    Article  PubMed  CAS  Google Scholar 

  53. Pichichero ME (1990) Effect of breast-feeding on oral rhesus rotavirus vaccine seroconversion: a metaanalysis. J Infect Dis 162:753–755.

    PubMed  CAS  Google Scholar 

  54. Ceyhan M, Kanra G, Secmeer G et al (1993) Take of rhesus-human reassortant tetravalent rotavirus vaccine in breast-fed infants. Acta Paediatr 82:223–227.

    Article  PubMed  CAS  Google Scholar 

  55. Karron RA, Steinhoff MC, Subbarao EK et al (1995) Safety and immunogenicity of a cold-adapted influenza A (H1N1) reassortant virus vaccine administered to infants less than six months of age. Pediatr Infect Dis J 14:10–16.

    Article  PubMed  CAS  Google Scholar 

  56. Watemberg N, Dagan R, Arbelli Y et al (1991) Safety and immunogenicity of Haemophilus type b-tetanus protein conjugate vaccine, mixed in the same syringe with diphtheria-tetanus-pertussis vaccine in young infants. Pediatr Infect Dis 10:758–761.

    CAS  Google Scholar 

  57. Decker MD, Edwards KM, Bradley R, Palmer P (1992) Comparative trial in infants of four conjugate Haemophilus influenzae type b vaccines. J Pediatr 120:184–189.

    Article  PubMed  CAS  Google Scholar 

  58. Siegrist CA (2003) Mechanisms by which maternal antibodies influence infant vaccine responses: review of hypotheses and definition of main determinants. Vaccine 21:3406–3412.

    Article  PubMed  CAS  Google Scholar 

  59. Silfverdal SA, Bodin L, Ulanova M, Hahn-Zoric M, Hanson LA, Olcen P (2002) Long term enhancement of the IgG2 antibody response to Haemophilus influenzae type b by breast-feeding. Pediatr Infect Dis J 21:816–821.

    Article  PubMed  Google Scholar 

  60. Silfverdal SA, Bodin L, Hugosson S et al (1997) Protective effect of breastfeeding on invasive Haemophilus influenzae infection: A case-control study in Swedish preschool children. Int J Epidemiol 26:443–450.

    Article  PubMed  CAS  Google Scholar 

  61. Silfverdal SA, Bodin L, Olcen P (1999) Protective effect of breastfeeding: an ecologic study of Haemophilus influenzae meningitis and breastfeeding in a Swedish population. Int J Epidemiol 28:152–156.

    Article  PubMed  CAS  Google Scholar 

  62. Silfverdal S-A, Bodin L, Ulanova M, Hahn-Zoric M, Hanson LÅ, Olcen P (unpublished). Duration of breastfeeding in relation to antibodies against Haemophilus influenzae type b in pre-school children.

    Google Scholar 

  63. Silfverdal SA, Bodin L, Ulanova M, Hahn-Zoric M, Hanson LÅ, Olcen P (unpublished) Levels of Id-1 and Id-2 antibodies and duration of breastfeeding are related to levels of antibodies against Haemophilus influenzae type b in children.

    Google Scholar 

  64. Chiba Y, Minagawa T, Mito K et al (1987) Effect of breast-feeding on responses of systemic interferon and virus-specific lymphocyte transformation in infants with respiratory syncytical virus infection. J Med Virol 21:7–14.

    Article  PubMed  CAS  Google Scholar 

  65. Avanzini MA, Plebani A, Monafo V et al (1992) A comparison of secretory antibodies in breast-fed and formula-fed infants over the first six months of life. Acta Paediatr 81:296–301.

    Article  PubMed  CAS  Google Scholar 

  66. Kalliomaki M, Ouwehand A, Arvilommi H, Kero P, Isolauri E (1999) Transforming growth factor-beta in breast milk: a potential regulator of atopic disease at an early age. J Allergy Clin Immunol 104:1251–1257.

    Article  PubMed  CAS  Google Scholar 

  67. Saarinen KM, Vaarala O, Klemetti P, Savilahti E (1999) Transforming growth factor-betal in mothers’ colostrum and immune responses to cows’ milk proteins in infants with cows’ milk allergy. J Allergy Clin Immunol 104:1093–1098.

    Article  PubMed  CAS  Google Scholar 

  68. Oddy WH, Halonen M, Martinez FD, et al (2003) TGF-beta in human milk is associated with wheeze in infancy. J Allergy Clin Immunol 112:723–728.

    Article  PubMed  CAS  Google Scholar 

  69. Laiho K, Lampi AM, Hamalainen M et al (2003) Breast milk fatty acids, eicosanoids, and cytokines in mothers with and without allergic disease. Pediatr Res 53:642–647.

    Article  PubMed  CAS  Google Scholar 

  70. Benn CS, Böttcher MF, Pedersen BV, Filteau SM, Duche’n K (2004) Mammary epithelial paracellular permeability in atopic and non-atopic mothers versus childhood atopy. Pediatr Allergy Immunol 15:123–126.

    Article  PubMed  Google Scholar 

  71. Hasselbalch H, Jeppesen DL, Engelmann MD, Michaelsen KF, Nielsen MB (1996) Decreased thymus size in formula-fed infants compared with breastfed infants. Acta Paediatr 85:1029–1032.

    Article  PubMed  CAS  Google Scholar 

  72. Ngom PT, Collinson AC, Pido-Lopez J, Henson SM, Prentice AM, Aspinall R (2004) Improved thymic function in exclusively breastfed infants is associated with higher interleukin 7 concentrations in their mothers’ breast milk. Am J Clin Nutr 80:722–728.

    PubMed  CAS  Google Scholar 

  73. Laky K, Lefrancois L, von Freeden-Jeffry U, Murray R, Puddington L (1998) The role of IL-7 in thymic and extrathymic development of TCR gamma delta cells. J Immunol 161:707–713.

    PubMed  CAS  Google Scholar 

  74. Laky K, Lewis JM, Tigelaar RE, Puddington L (2003) Distinct requirements for IL-7 in development of TCR gammadelta cells during fetal and adult life. J Immunol 170:4087–4094.

    PubMed  CAS  Google Scholar 

  75. Aaby P, Marx C, Trautner S et al (2002) Thymus size at birth is associated with infant mortality: a community study from Guinea-Bissau. Acta Paediatr 91:698–703.

    Article  PubMed  CAS  Google Scholar 

  76. Buescher ES, McWilliams-Koeppen P (1998) Soluble tumor necrosis factor-alpha (TNF-alpha) receptors in human colostrum and milk bind to TNF-alpha and neutralize TNF-alpha bioactivity. Pediatr Res 44:37–42.

    Article  PubMed  CAS  Google Scholar 

  77. Kono Y, Beagley KW, Fujihashi K et al (1991) Cytokine regulation of localized inflammation. Induction of activated B cells and IL-6-mediated polyclonal IgG and IgA synthesis in inflamed human gingiva. J Immunol 146:1812–1821.

    PubMed  CAS  Google Scholar 

  78. Davidson LA, Lonnerdal B (1990) Fecal alpha 1-antitrypsin in breast-fed infants is derived from human milk and is not indicative of enteric protein loss. Acta Paediatr Scand 79:137–141.

    Article  PubMed  CAS  Google Scholar 

  79. Grosvenor CE, Picciano MF, Baumrucker CR (1993) Hormones and growth factors in milk. Endocr Rev 14:710–728.

    Article  PubMed  CAS  Google Scholar 

  80. Hanson LÅ, Korotkova M, Telemo E (2005) Chapter 104. Human milk, its components and their immunobiological function. In: Mucosal Immunology vol 1. Third edition (JB Mestecky, ME Lamm, W Strober, J Bienenstock, J McGhee, L Mayer eds). San Diego: Elsevier/Academic Press pp 1795–1822.

    Google Scholar 

  81. Tuboly S, Bernáth S, Glávits R, Kovács A, Megyeri Z (1995) Intestinal absorption of colostral lymphocytes in newborn lambs and their role in the development of immune status. Acta Veterinaria Hungarica 43:105–115.

    PubMed  CAS  Google Scholar 

  82. Campbell Jr DA, Lorber MI, Sweeton JC, Turcotte JG, Niederhuber JE, Beer AE (1984) Breast-feeding and maternal-donor renal allografts. Possibly the original donor-specific transfusion. Transplantation 37:340–344.

    Article  PubMed  Google Scholar 

  83. Saarinen, U.M., 1982, Prolonged breast-feeding as prophylaxis for recurrent otitis media. Acta Paediatr Scand. 71:567–571.

    Article  PubMed  CAS  Google Scholar 

  84. Wilson AC, Forsyth JS, Greene SA, Irvine L, Hau C, Howie PW (1998) Relation of infant diet to childhood health: seven year follow up of cohort of children in Dundee infant feeding study. BMJ 316:21–25.

    PubMed  CAS  Google Scholar 

  85. Oddy WH, Peat JK (2003) Breastfeeding, asthma, and atopic disease: an epidemiological review of the literature. J Hum Lact 19:250–261.

    Article  PubMed  Google Scholar 

  86. Laubereau B, Brockow I, Zirngibl A et al (2004) Effect of breast-feeding on the development of atopic dermatitis. J Pediatr 144:602–607.

    Article  PubMed  Google Scholar 

  87. Kramer MS, Chalmers B, Hodnett ED et al (2001) Promotion of Breastfeeding Intervention Trial (PROBIT): a randomized trial in the Republic of Belarus. JAMA 285:413–420.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Hanson, L.Å. et al. (2009). Immune Function. In: Goldberg, G., Prentice, A., Prentice, A., Filteau, S., Simondon, K. (eds) Breast-Feeding: Early Influences on Later Health. Advances in Experimental Medicine and Biology, vol 639. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8749-3_8

Download citation

Publish with us

Policies and ethics