Study Management and Allocation of Exercise Classes for Large Lectures at TU Berlin

  • Sabina Jeschke
  • Robert Luce
  • Nicole Natho
  • Olivier Pfeiffer
  • Erhard Zorn
Conference paper

Abstract

At TU Berlin the number of students in major classes for students in their first semesters easily exceeds 2.000 in a single course (Analysis I for engineering students, for example). Due to this large number of students, simple organizational duties such as assigning exercise courses to students or tracking admission criteria for final exams become challenging. We present an environment – the “MosesKonto” – that helps finding an optimal (in respect to student wishes) assignment into exercise groups and provides means for tracking and managing exam registration. Based on the data acquired in the summer term 2005, already 50% of all bachelor exams were managed through the MosesKonto at TU Berlin.

Keywords

Stein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    Malave, C.; Imbrie, P. & Watson, K., “Intervention programs for a freshman integrated curriculum”, Frontiers in Education Conference, 1999. FIE ’99. 29th Annual, 1999, 3, 13D7/3-13D7/8vol.3.Google Scholar
  2. [2]
    Grottke, S., Jeschke, S., Lach, G., Luce, R., Pfeiffer, O., Sablatnig, J., and Zorn, E., “MosesKonto: Student Management and optimized exercise class assignment at TU Berlin”, Proceedings of the E-Learn 2006 ,Vol. 5, pp. 2839 2840.Google Scholar
  3. [3]
    Grottke, S., Jeschke, S., Lach, G., Luce, R., Pfeiffer, O., Sablatnig, J., and Zorn, E., “MosesKonto: Optimiertes Verteilungsverfahren für Tutorien und Studierendenverwaltung an der TU Berlin”, DeLFI 2006: 4. e-Learning Fachtagung Informatik der Gesellschaft für Informatik e.V. (GI), pp. 385 386, 2006.Google Scholar
  4. [4]
    Ahuja, Ravindra K., Magnati, Thomas L., Orlin, James B. (1993), ,,Network Flows: Theory, Algorithms, and Applications”, Prentice Hall, New Jersey, USA.Google Scholar
  5. [5]
    Corman, Thomas H., Leiserson, Charles E., Rivest Ronald L., Stein, Clifford (2001), “Introduction to Algorithms”, 2nd edition, MIT Press and McGraw-Hill, New York, USAGoogle Scholar
  6. [6]
    Löbel, A. (2000) MCF - A network simplex Implementation (v1.2). www.zib.de/Optimization/Software/Mcf
  7. [7]
    Nguyen, V. & Tan, Y., “Minimum convex cost flow problem”, Proceedings of the 2003 Joint Conference of the Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia., 2003, 2, 1248-1252vol.2Google Scholar
  8. [8]
    Salehi Fathabadi H., and Shridel, G.H., “A O(mn) Time Algorithm for Solving Minimal Cost Network Flow Problems”, Asia-Pacific Journal of Operational Research (20), pp. 161-175, 2003.Google Scholar
  9. [9]
    Luce, R., “TUTOP – Tutorienplätze optimal verteilen”, Seminar Paper, TU Berlin, Germany, 2003.Google Scholar
  10. [10]

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sabina Jeschke
    • 1
  • Robert Luce
    • 2
  • Nicole Natho
    • 2
  • Olivier Pfeiffer
    • 2
  • Erhard Zorn
    • 2
  1. 1.Center for Information Technologies - RUSUniversity of Stuttgart70553 StuttgartGermany
  2. 2.Department of Mathematics and Natural Sciences10623 BerlinGermany

Personalised recommendations