On Facilitating the Process of Providing Expert Advises Applying Association Rules

  • S. Encheva
  • S. Tumin
Conference paper


Relations between a trilattice and corresponding meet-distributive lattices are discussed. The three meet-distributive lattices illustrate the five information levels, five logical levels and five levels of constructivity respectively. While the trilattice shows connections among the sixteen truth values in general, the three meet-distributive lattices visualize specific information about the sixteen truth values with respect to information, logic and constructivity.


Decision Support System Association Rule Mining Association Rule Formal Concept Analysis Logical Disjunction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agrawal, R., Imielinski, T., and Swami, A.: Mining association rules between sets of items in large databases. Proceedings of ACM SIGMOD international conference on management of data, Washington, DC, USA, (1993), 207-216Google Scholar
  2. [2]
    [2] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A.I.: Fast discovery of association rules. (Uthurusamy, F., Piatetsky-Shapiro, G., Smyth, P. eds) Advances in Knowledge discovery of association rules, MIT Press, (1996), 307–328Google Scholar
  3. [3]
    Agrawal, R. and Srikant, R.: Fast algorithm for mining association rules. Proceedings of the 20th very large data base conference, Santiago, Chile, (1994), 487-489Google Scholar
  4. [4]
    Arnott, D. and G. Pervan, G.: A critical analysis of decision support systems research, Journal of Information Technology, 20(2), (2005), 67-87.CrossRefGoogle Scholar
  5. [5]
    Baskerville, R., and Myers, M.: Information Systems as a Reference Discipline, MIS Quarterly, 26(1), (2002), 1-14.CrossRefGoogle Scholar
  6. [6]
    Bastide, T., Taouil, R., Pasquier, N., Stumme, G., and Lakhal, L.: Mining frequent patterns with counting inference. SIGKDD explorations, Special issue on scalable algorithms, 2(2), (2000), 71-80Google Scholar
  7. [7]
    N. .J. Belnap, ”A useful four.valued logic”, Modern uses of multiple-valued logic, J.M. Dunn and G. Epstain (eds), D. Reidel Publishing Co., Dordrecht, 1977, pp. 8-37Google Scholar
  8. [8]
    Brin, S., Motwani R., Ullmann, J.D., and Tsur, S.: Dynamic itemset counting and implication rules for market basket data. Proceedings of the ACM SIGKDD international conference on management of data, Tuscon, AZ, USA, (1997), 255-264Google Scholar
  9. [9]
    [9] Carpineto, C. and Romano, G.: Concept Data Analysis: Theory and Applications, John Wiley and Sons, Ltd., (2004)Google Scholar
  10. [10]
    B. A. Davey, and H. A Priestley, ”Introduction to lattices and order,” Cambridge University Press, Cambridge, 2005Google Scholar
  11. [11]
    Delgado, M., Sanchez, D., Martin-Bautista, M.J., and Vila, M.A.: Mining association rules with improved semantics in medical databases. Artificial Intelligence in Medicine, 21(1- 3), (2001)Google Scholar
  12. [12]
    Felix, P., Fraga, S., Marin, R., and Barro, S.: Linguistic representation of fuzzy temporal profiles, International Journal of Uncertainty, Fuzziness and Know ledge Based Systems, 7(3), (1999), 243-257MATHCrossRefGoogle Scholar
  13. [13]
    Fitting, M.: Kleene’ s Logic, Generalized, Journal of Logic and Computation, 1(6), (1991), 797-810MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    [14] Ganter, B., Stumme, G., and Wille, R.: Formal Concept Analysis - Foundations and Applications. Lecture Notes in Computer Science, Springer Verlag, 3626, (2005)Google Scholar
  15. [15]
    Garcia, O. N., and Moussavi, M.: A Six-Valued Logic for Representing Incomplete Knowledge, Proc. of the 20th International Symposium on Multiple-Valued Logic (ISMVL), IEEE Computer Society Press, Charlotte, NC, USA, May (1990), 110-114.Google Scholar
  16. [16]
    Gurfinkel, A. and Chechik, M.: Yasm: Model-Checking Software with Belnap Logic. Technical Report 470, University of Toronto, April, (2005)Google Scholar
  17. [17]
    Malerba, D., Lisi, F.A., Appice, A. and Sblendorio, F.: Mining spatial association rules in census data: a relational approach. Proceedings of the ECML/ PKDD’ 02 workshop on mining official data, University Printing House, Helsinki, (2002), 80-93Google Scholar
  18. [18]
    [18] Merceron, A. and Yacef, K.: A Web-based Tutoring Tool with Mining Facilities to Improve Learning and Teaching. Proceedings of 11th International Conference on Artificial Intelligence in Education. F. Verdejo and U. Hoppe (eds) Sydney, IOS Press, (2003)Google Scholar
  19. [19]
    Moussavi, M., and Garcia, N.: A Six-Valued Logic and its application to artificial intelligence, Proc. of the Fift Southeastern Logic Symposium, IEEE Computer Society Press, UNC-Charlotte, NC, USA, (1989).Google Scholar
  20. [20]
    Mulsliner, D. J., Durfee, E. H., and Shin, K. G.: CIRCA: A cooperative intelligent real-time control architecture. Trans. on Systems, Man and Cybernetics, 23(6), (1993), 1561-1574CrossRefGoogle Scholar
  21. [21]
    Pasquier, N., Bastide, T., Taouil, R., and Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Journal of Information Systems, 24(1), (1999), 25-46CrossRefGoogle Scholar
  22. [22]
    Pecheanu, E., Segal, C. and Stefanescu, D.:Content modeling in Intelligent Instructional Environment. Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin Heidelberg New Jork, 3190, (2003), 1229-1234Google Scholar
  23. [23]
    Sakama, C.: Ordering default theories. Proceedings of the 18th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, Los Altos, CA, (2003), 839-844Google Scholar
  24. [24]
    Sakama, C.: Ordering default theories and nonmonotonic logic programs Theoretical Computer Science, 338(1-3), (2005), 127-152MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Shramko, Y., Dunn, J.M. and T. Takenaka, T., The Trilattice of Constructive Truth Values. Journal of Logic Computation 11(6), (2001) 761-788MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    Wagner, G.: Vivid Logic: Knowledge Based reasoning with two kinds of negation, Lecture Notes in Artificial Intelligence, 764, Springer-Verlag, Berlin Heidelberg New York, (1994)Google Scholar
  27. [27]
    R. Wille, ”Concept lattices and conceptual knowledge systems,” Computers Math. Applic., 23(6-9), 1992, 493- 515Google Scholar
  28. Zaki, M.J.: Generating non-redundant association rules. Proceedings of the 6th ACM SIGKDD international conference on knowledge discovery and data mining, Boston, USA (2000), 34-43Google Scholar
  29. [29]
    Zaki, M. J. and Hsiao, C.-J.: CHARM: An efficient algorithm for closed itemset mining. Proceedings of the 2nd SIAM international conference on data mining, Arlington, VA, USA, (2002), 34-43Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. Encheva
    • 1
  • S. Tumin
    • 2
  1. 1.Stord/Haugesund University CollegeBjØrnsonsg. 45Norway
  2. 2.IT DeptUniversity of BergenNorway

Personalised recommendations