Advertisement

Optimization of a Hexapod Micro Parallel Robot Using Genetic Algorithms

  • Sergiu-Dan Stan
  • Vistrian Maties
  • Radu Balan
  • Ciprian Lapusan

Abstract

In this paper a mono-objective optimum design procedure for a six-degree of freedom parallel micro robot is outlined by using optimality criterion of workspace and numerical aspects. A mono-objective optimization problem is formulated by referring to a basic performance of parallel robots. Additional objective functions can be used to extend the proposed design procedure to more general but specific design problems. A kinematic optimization was performed to maximize the workspace of the mini parallel robot. Optimization was performed using Genetic Algorithms.

Keywords

Genetic Algorithm Parallel Manipulator Parallel Robot Singular Configuration Reachable Workspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Gosselin. “Determination of the workspace of 6-d.o.f. parallel manipulators”.ASME Journal of Mechanical Design, 112:331–336, 1990.CrossRefGoogle Scholar
  2. [2]
    J. P. Merlet. “Determination of the orientation workspace of parallel manipulators”.Journal of intelligent and robotic systems, 13:143–160, 1995.CrossRefGoogle Scholar
  3. [3]
    A. Kumar, KJ. Waldron. “The workspace of mechanical manipulators”.ASME J. Mech. Des. 1981; 103:665-672.Google Scholar
  4. [4]
    YC. Tsai, AH. Soni. “Accessible region and synthesis of robot arm”.ASME J. Mech Des. 1981, 103: 803-811.Google Scholar
  5. [5]
    KG. Gupta, Roth B., “Design considerations for manipulator workspace”.ASME J. Mech. Des. 1982, 104(4), 704-711.CrossRefGoogle Scholar
  6. [6]
    K. Sugimoto, Duffy J, Hunt KH, “Special configurations of spatial mechanisms and robot arms”.Mech Mach Theory1982, 117(2); 119-132.CrossRefGoogle Scholar
  7. [7]
    KC. Gupta. “On the nature of robot workspaces”,Int. J. Rob. Res. 1986; 5(2): 112-121Google Scholar
  8. [8]
    JK. Davidson, KH. Hunt, “Rigid body location and robot workspace: some alternative manipulator forms”.ASME J. Mech. Transmissions Automat Des 1987, 109(2); 224-232.Google Scholar
  9. [9]
    SK. Agrawal, “Workspace boundaries of in-parallel manipulator systems”.Int. J. Robotics Automat 1990, 6(3) 281-290.Google Scholar
  10. [10]
    C. Gosselin, Angeles J. “Singularities analysis of closed loop kinematic chains”.IEEE Trans Robotics Automat1990; 6(3) 281-290.CrossRefGoogle Scholar
  11. [11]
    M. Cecarelli, “A synthesis algorithm for three-revolute manipulators by using an algebraic formulation of workspace boundary”.ASME J. Mech. Des.1995; 117(2(A)): 298-302.Google Scholar
  12. [12]
    S. K. Agrawal. “Workspace boundaries of in-parallel manipulator systems”.IEEE Transactions on Robotics and Automation, 7(2):94–99, 1991.Google Scholar
  13. [13]
    F. Pernkopf and M. Husty, “Reachable Workspace and Manufacturing Errors of Stewart-Gough Manipulators”,Proc. of MUSME 2005, the Int. Sym. on Multibody Systems and Mechatronics Brazil, 2005, p. 293-304.Google Scholar
  14. [14]
    S. Stan, Diplomarbeit,Analyse und Optimierung der strukturellen Abmessungen von Werkzeugmaschinen mit Parallelstruktur, IWF-TU Braunschweig, 2003, Germany.Google Scholar
  15. [15]
    K. Cleary and T. Arai. “A prototype parallel manipulator: Kinematics, construction, software, workspace results, and singularity analysis”. InProceedings of International Conference on Robotics and Automation, pages 566–571, Sacramento, California, April 1991.Google Scholar
  16. [16]
    C. Ferraresi, G. Montacchini, and M. Sorli. “Workspace and dexterity evaluation of 6 d.o.f. spatial mechanisms”. InProceedings of the ninth World Congress on the theory of Machines and Mechanism, pages 57–61, Milan, August 1995.Google Scholar
  17. [17]
    M. Ceccarelli, G. Carbone, E. Ottaviano, “An Optimization Problem Approach For Designing Both Serial And Parallel Manipulators”,Proc. of MUSME 2005, the Int. Sym. on Multibody Systems and Mechatronics Uberlandia, Brazil, 6-9 March 2005Google Scholar
  18. [18]
    M. Ceccarelli,Fundamentals of Mechanics of Robotic Manipulation, Dordrecht, Kluwer/Springer, 2004.MATHGoogle Scholar
  19. [19]
    J.A. Snyman, L.J. du Plessis, and J. Duffy. “An optimization approach to the determination of the boundaries of manipulator workspaces”.Journal of Mechanical Design, 122:447–455, 2000.CrossRefGoogle Scholar
  20. [20]
    L.J. Du Plessis and J.A. Snyman. “A numerical method for the determination of dextrous workspaces of Gough-Stewart platforms”.Int. Journal for Numerical Methods in Engineering, 52:345–369, 2001.MATHCrossRefGoogle Scholar
  21. [21]
    Schoenherr, Bemessen, , “Bewerten und Optimieren von Parallelstrukturen”, In: Proc. 1st Chemnitzer Parallelstruktur Seminar, Chemnitz, Germany, 85-96, 1998. J. Hesselbach, H. Kerle, M. Krefft, N. Plitea, “The Assesment of Parallel Mechanical Structures for Machines Taking Account of their Operational Purposes”. In: Proc. of the 11th World Congress in Mechanism and Machine Science, Tianjin, China, 2004.Google Scholar
  22. [22]
    S. Stan,Workspace optimization of a two degree of freedom mini parallel robot, 2006 IEEE— AQTR 2006 (THETA 15), May 25-28 2006, Cluj-Napoca, Romania, IEEE Catalog number: 06EX1370, ISBN: 1-4244-0360-X, pp. 278-283.Google Scholar
  23. [23]
    S. Stan, V. Maties, R. Balan, “Optimal Design of a 2 DOF Micro Parallel Robot Using Genetic Algorithms”, Proceedings of the 2007 IEEE-ICIT 2007, IEEEInternational Conference on Integration Technology, March 20 - 24, 2007, Shenzhen, China, p. 719-724. IEEE Catalog Number: 07EX1735, ISBN: 1-4244-1091-6, ISBN: 1-4244-1092-4Google Scholar
  24. [24]
    S. Stan, “Optimal design of a parallel kinematic machine with two degrees of freedom”, 10th European Mechanics of Materials Conference (EMMC-10), ISBN 978-83-89687-16-6, p. 419-429, Kaziemierz Dolny, Poland, June 11-14, 2007.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sergiu-Dan Stan
    • 1
  • Vistrian Maties
    • 1
  • Radu Balan
    • 1
  • Ciprian Lapusan
    • 1
  1. 1.Department of MechatronicsTechnical University of Cluj-Napoca Cluj-Napoca, C. Daicoviciu no. 15Romania

Personalised recommendations