Coffee-Associated Meloidogyne spp. – Ecology and Interaction with Plants

  • Ricardo M. Souza
  • Ricardo Bressan-Smith

Abstract

This chapter reviews the basic biology of coffee-parasitic root-knot nematodes (RKNs), Meloidogyne spp., their interaction with environmental factors, epidemiology-related issues and interaction with coffee plants at the cellular, tissue and physiological levels. For most of these topics, the available information is largely restricted to M. exigua; some information exists for M. incognita and M. konaensis. More specifically, this review examines the literature on RKNs’ thermal requirements, the influence of soil, host and climate factors on nematode population fluctuation, sampling strategies, damage threshold and epidemiology of RKNs, complex diseases involving M. arabicida and M. incognita, and physiological alterations caused on parasitized coffee plants.

Keywords

Physiology of parasitism histopathology epidemiology life cycle population fluctuation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abawi GS, Chen J (1998) Concomitant pathogen and pest interactions. In: Barker R, Pederson GA (eds) Plant and nematode interactions. Agronomy monograph #36. ASA, CSSA, SSSA, MadisonGoogle Scholar
  2. Akunda EM, Kumar D (1981) A simple technique for timing irrigation in coffee using cobalt chloride disks. Irrig Sci 3:57CrossRefGoogle Scholar
  3. Almeida VF, Campos VP (1991) Alternância de culturas e sobrevivência de Meloidoygne exigua em áreas de cafezal infestado e erradicado. Nematol Bras 15:30–42Google Scholar
  4. Almeida VF, Campos VP (1993) Sobrevivência de Meloidogyne exigua no solo e em raizes de cafeeiro no campo. Fitopatol Bras 18:147–150Google Scholar
  5. Almeida VF, Campos VP, Lima RD (1987) Flutuação populacional de Meloidogyne exigua na rizosfera do cafeeiro. Nematol Bras 11:159–175Google Scholar
  6. Alvarenga G (1974) Determinação preliminar da longevidade no solo do nematóide Meloidogyne exigua. Proceedings II Congr Bras Pesq Cafeeiras, no paginationGoogle Scholar
  7. Anonymous (2007) Instituto Nacional de Meteorologia. http://www.inmet.gov.br/, visited on December 30th 2007
  8. Anthony F, Topart P, Martinez A et al (2005) Hypersensitive-like reaction conferred by the Mex-1 resistance gene against Meloidogyne exigua in coffee. Plant Pathol 54:476–482CrossRefGoogle Scholar
  9. Barbosa DHSG (2008) Manejo cultural, quimico e genético em áreas cafeeiras infestadas por Meloidogyne exigua Göldi, 1887 na região noroeste fluminense. Universidade Estadual do Norte Fluminense Darcy Ribeiro, DS thesis, Campos dos GoytacazesGoogle Scholar
  10. Barbosa DHSG, Vieira HD, Souza RM et al (2004) Survey of root-knot nematode (Meloidogyne sp.) in coffee plantations in the state of Rio de Janeiro, Brazil. Nematol Bras 28:43–47Google Scholar
  11. Barker KR (1985) Sampling nematode communities. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne. Vol. 2, Methodology. North Carolina State University Department of Plant Pathology and USAID, RaleighGoogle Scholar
  12. Been TH, Schomaker CH (2006) Distribution patterns and sampling. In: Perry RN, Moens M (eds) Plant Nematology. CABI, WallingfordGoogle Scholar
  13. Bertrand B, Cilas C, Herve G et al (1998) Relations entre les populations des nematodes Meloidogyne exigua et Pratylenchus sp., dans les racines de Coffea arabica au Costa Rica. Plante Rech Dev 5:279–286Google Scholar
  14. Bertrand B, Nunez C, Sarah J-L (2000) Disease complex in coffee involving Meloidogyne arabicida and Fusarium oxysporum. Plant Pathol 49:383–388CrossRefGoogle Scholar
  15. Boneti JIS, Ferraz S, Braga JM et al (1982) Influência do parasitismo de Meloidogyne exigua sobre a absorção de micronutrientes (Zn, Cu, Fe, Mn e B) e sobre o vigor de mudas de cafeeiro. Fitopatol Bras 7:197–207Google Scholar
  16. Campos PS, Quartin V, Ramalho JC et al (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp plants. J Plant Physiol 160:283–292PubMedCrossRefGoogle Scholar
  17. Campos VP (1997) Café (Coffea arabica L.) Controle de doenças causadas por nematóides. In: Valle FXR, Zambolin L (eds) Controle de doenças de plantas. Universidade Federal de Viçosa, ViçosaGoogle Scholar
  18. Campos VP (2007) Soil plowing and irrigation for Meloidogyne spp. control. Proceedings XXVII Congr Bras Nematol:18Google Scholar
  19. Campos VP, Villain L (2005) Nematode parasites of coffee and cocoa. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edition. CABI, WallingfordGoogle Scholar
  20. Cannel MGR (1972) Photoperiodic response of mature trees of arabica coffee. Turrialba 22:198Google Scholar
  21. Cardoso RML (1986) Ocorrência da murcha vascular do cafeeiro (Coffea arabica) no estado do Paraná – Brasil, induzida por Fusarium oxysporum f.sp. coffeae. Fitopatol Bras 11:753–760Google Scholar
  22. Coste R (1992) Coffee – The plant and the product. MacMillan Press, LondonGoogle Scholar
  23. DaMatta FM (2003) Drought as a multidimensional stress affecting photosynthesis in tropical tree crops. In: Hemantaranjan A (ed) Advances in Plant Physiology. Vol. 5. Scientific Publishers, JodhpurGoogle Scholar
  24. DaMatta FM (2004) Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding. Braz J Plant Physiol 16:1–6CrossRefGoogle Scholar
  25. DaMatta FM (2004a) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Res. 86:99–114CrossRefGoogle Scholar
  26. DaMatta FM (2004b) Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding. Braz J Plant Physiol 16:1–6CrossRefGoogle Scholar
  27. DaMatta FM, Chaves ARM, Pinheiro HA et al (2003) Drought tolerance of two field-grown clones of Coffea canephora. Plant Sci 164:111–117CrossRefGoogle Scholar
  28. DaMatta FM, Loos RA, Rodrigues R et al (2001) Actual and potential photosynthetic rates of tropical crop species. Braz J Plant Physiol 13:24–32Google Scholar
  29. DaMatta FM, Ramalho JDC (2006) Impacts of drought and temperature stress on coffee physiology and production: a review. Braz J Plant Physiol 18:55–81Google Scholar
  30. De los Santos-Briones C, Hernández-Sotomayor SMT (2006) Coffee biotechnology. Braz J Plant Physiol 18:217–227CrossRefGoogle Scholar
  31. Di Vito M, Crozzoli R, Vovlas N (2000) Pathogenicity of Meloidogyne exigua on coffee (Coffea arabica L.) in pots. Nematropica 30:55–61Google Scholar
  32. Dutra MR, Campos VP (2000) Patogenicidade de nematóides em cafeeiros submetidos a estresse. Proceedings XXII Congr Bras Nematol:107Google Scholar
  33. Eisenback JD (1993) Interactions between nematodes in cohabitance. In: Khan MW (ed) Nematode Interactions. Chapman and Hall, LondonGoogle Scholar
  34. Fahl JI, Carelli MLC (2007) Os estudos sobre a fisiologia do cafeeiro no Instituto Agronômico. O Agronômico 59:41–43Google Scholar
  35. Fonseca HS, Ferraz LCCB, Machado SR (2003a) Caracterização do vacuoma de células gigantes induzidas por espécies de Meloidogyne em raizes de seringueira ‘RRIM600’. Nematol Bras 27:193–198Google Scholar
  36. Fonseca HS, Ferraz LCCB, Machado SR (2003b) Ultraestrutura comparada de raizes de seringueira parasitadas por Meloidogyne exigua e M. javanica. Nematol Bras 27:199–206Google Scholar
  37. Gheysen G, Jones JT (2007) Molecular aspects of plant-nematode interactions. In: Perry RN, Moens M (eds) Plant Nematol CABI, WallingfordGoogle Scholar
  38. Gilmore AM, Govindjee (1999) How higher plants respond to excess light: Energy dissipation in photosystem II. In: Singhal GS, Renger G, Irrgang H-D et al (eds) Concepts in Photobiology. Kluwer Academic Publishers, DordrechtGoogle Scholar
  39. Goldberg AD, Bierny O, Renard C (1984) Évolution compare des parameters hydriques chez Coffea canephora Pierre et l’hydride Coffea arabusta Capot et Aké Assi. Café Cacao Thé 28:257–266Google Scholar
  40. Gonçalves W, Mazzafera P, Ferraz LCCB et al (1995) Biochemical basis of coffee tree resistance to Meloidogyne incognita. Plante Rech Dev 2:54–60Google Scholar
  41. Gonçalves W, Ramiro DA, Gallo PB et al (2004) Manejo de nematóides na cultura do cafeeiro. Proceedings Reunião Itinerante Fitossanidade Inst Biol:48–66Google Scholar
  42. Gonçalves W, Silvarolla MB (2007) A luta contra a doença causada pelos nematóides parasitos. Agronômico 59:54–56Google Scholar
  43. Gonçalves W, Silvarolla MB, Lima MMA (1998) Estrategias visando a implementação do manejo integrado dos nematóides parasitos do cafeeiro. Inf Agropecuário 19:36–47Google Scholar
  44. Haarer AE (1962) Modern Coffee Production. Leonard Hill, LondonGoogle Scholar
  45. Herve G, Bertrand B, Villain L et al (2005) Distribution analyses of Meloidogyne spp. and Pratylenchus coffeae sensu lato in coffee plots in Costa Rica and Guatemala. Plant Pathol 54:471–475CrossRefGoogle Scholar
  46. Huang SP, Souza PE, Campos VP (1984) Seasonal variation of a Meloidogyne exigua population in a coffee plantation. J Nematol 16:115–117PubMedGoogle Scholar
  47. Hurchanik DDP, Schmitt DP, Hue NV et al (2003) Relationship of Meloidogyne konaensis population densities to nutritional status of coffee roots and leaves. Nematropica 33:55–64Google Scholar
  48. Hurchanik DDP, Schmitt DP, Hue NV et al (2004) Plant nutrient partitioning in coffee infected with Meloidogyne konaensis. J Nematol 36:76–84PubMedGoogle Scholar
  49. Hussey RS (1985) Host-parasite relationships and associated physiological changes. In: Sasser JN, Carter CC (eds) An advanced treatise on Meloidogyne. Vol. 1 – Biology and control. North Carolina State University Department of Plant Pathology and USAID, RaleighGoogle Scholar
  50. Ikeda T, Suzaki T (1984) Influence of pine-wood nematodes on hydraulic conductivity and water status in Pinus thunbergii. J Jpn For Soc 66:412–420Google Scholar
  51. Iwasaki Y, Yoshikawa K, Sakamoto K et al (1999) Changes in water relation parameters and photosynthetic rate of pine-wood nematode-infested Pinus densiflora Sieb. et Zucc. seedlings under several soil moisture conditions. J Jpn Soc Reveget Technol 24:186–191Google Scholar
  52. Jaehn A (1990) Desenvolvimento de Meloidogyne incognita raça 2 em cafeeiro, afetado pela temperatura. Nematol Bras 14:89–102Google Scholar
  53. Jaehn A (1991a) Determinação da constante térmica das raças 1, 2 e 4 de Meloidogyne incognita em cafeeiro. Nematol Bras 15:135–142Google Scholar
  54. Jaehn A (1991b) Estimativa do número de gerações de três raças de Meloidogyne incognita em cafeeiro para o estado de São Paulo. Nematol Bras 15:143–151Google Scholar
  55. Jaehn A, Monteiro AR, Lordello LGE et al (1983) Efeito de nitrogênio e de potássio em Meloidogyne incognita (Kofoid e White, 1919) Chitwood, 1949, como parasito do cafeeiro. Soc Bras Nematol 7:189–208Google Scholar
  56. Jaehn A, Monteiro AR, Lordello LGE et al (1984) Efeitos na penetração de Meloidogyne incognita (Kofoid e White, 1919) Chitwood, 1949, em raizes de cafeeiros (Coffea arabica L.) do nitrogênio e do potássio. Nematol Bras 8:235–256Google Scholar
  57. Jaehn A, Rebel EK (1984) Sobrevivência do nematóide de galhas Meloidogyne incognita em substrato infestado, para produção de mudas de cafeeiro sadias. Nematol Bras 8:319–324Google Scholar
  58. Larcher W (1981) Effects of low temperature stress and frost injury on plant productivity. In: Johnson CB (ed) Physiological processes limiting plant productivity. Butterworths, LondonGoogle Scholar
  59. Leguizamon-Caycedo J (1976) Relacion entre poblaciones de Meloidogyne spp. en el suelo y el daño causado em cafetales establecidos. Cenicafe 27:174–179Google Scholar
  60. Leguizamon-Caycedo JE (1997) Efecto de Meloidogyne spp. en plantaciones establecidas de cafe variedad Caturra. Cenicafe, Informe Anual de Actividades 1998–1997, ChinchinaGoogle Scholar
  61. Lima RD, Ferraz S (1985a) Biologia de Meloidogyne exigua. 1. Desenvolvimento embriogênico e efeito da temperatura na embriogênese. Rev Ceres 32:339–347Google Scholar
  62. Lima RD, Ferraz S (1985b) Biologia de Meloidogyne exigua. 2. Desenvolvimento pós-embriogênico em cafeeiro ‘Mundo Novo’. Rev Ceres 32:349–361Google Scholar
  63. Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Ann Rev Plant Physiol Plant Mol Biol 45:633–662CrossRefGoogle Scholar
  64. Lordello RRA, Lordello LGE (1983) Desenvolvimento de Meloidogyne exigua Göldi, 1887, em raizes de cafeeiros, em três ambientes. Ann Escola Superior de Agric Luiz de Queiroz 40:271–295Google Scholar
  65. Macedo MCM, Haag HP, Lordello LGE (1974) Influência do nematóide Meloidogyne exigua na absorção de nutrientes em plantas jovens de cafeeiro. Ann Escola Superior de Agric Luiz de Queiroz 31:91–104Google Scholar
  66. Maximiniano C, Campos VP, Souza RM et al (2001) Flutuação populacional de Meloidogyne exigua em cafezal naturalmente infestado por Pasteuria penetrans. Nematol Bras 25:63–69Google Scholar
  67. Mazzafera P, Kubo RK, Inomoto M (2004) Carbon fixation and partitioning in coffee seedlings infested with Pratylenchus coffeae. Eur J of Plant Pathol 110:861–865CrossRefGoogle Scholar
  68. McSorley R (1987) Extraction of nematodes and sampling methods. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic Press, SydneyGoogle Scholar
  69. Meinzer FC, Grantz DA, Goldstein G et al (1990b) Leaf water relations and maintenance of gas exchange in coffee cultivars grown in drying soil. Plant Physiol 94:1781–1787CrossRefGoogle Scholar
  70. Melakeberhan H, Webster JW (1993) The phenology of plant-nematode interaction and yield loss. In: Khan MW (ed) Nematode Interactions. Chapman and Hall, LondonGoogle Scholar
  71. Mendes BV, Ferraz S, Shimoya C (1976) Histopatologia de raizes de cafeeiro parasitadas por Meloidogyne exigua. 1. Formação de células gigantes. Summa Phytopathol 2:97–102Google Scholar
  72. Mendes BV, Ferraz S, Shimoya C (1977) Observações histopatológicas de raizes de cafeeiro parasitadas por Meloidogyne exigua Göldi, 1887. Nematol Bras 2:207–229Google Scholar
  73. Moraes MV, Lordello LGE, Reis AJ et al (1977) Ensaio de rotação de culturas para reaproveitamento, com cafeeiro, de terras infestadas por Meloidogyne exigua. Nematol Bras 2:257–265Google Scholar
  74. Nakasono K, Lordello RRA, Monteiro AR et al (1980) Desenvolvimento das raizes de cafeeiros novos transplantados e penetração por Meloidogyne exigua. Nematol Bras 4:33–46Google Scholar
  75. Negron JA, Acosta N (1987) Studies on host-parasite relationships of Meloidogyne incognita and Coffea arabica cv Borbon. Nematropica 17:71–77Google Scholar
  76. Negron JA, Acosta N (1989) The Fusarium oxysporum f.sp. coffeae-Meloidogyne incognita complex in ‘Bourbon’ coffee. Nematropica 19:161–168Google Scholar
  77. Netto AT, Campostrini E, Oliveira JG et al (2005) Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scient Horticult 104:199–209CrossRefGoogle Scholar
  78. Nunes MA (1988) Environmental affects on the stomatal and mesophyll regulation of photosynthesis in coffee leaves. Photosynthetica 22:547–553Google Scholar
  79. Nunes MA, Bierhuizen JF, Ploegman C (1968) Studies on the productivity of coffee. I. Effects of light, temperature and CO2 concentration on photosynthesis of Coffea arabica. Acta Bot Neerl 17:93–102Google Scholar
  80. Nunes MA, Brumby D, Davies DD (1973) Estudo comparativo do metabolismo fotossintético em folhas de cafeeiro, beterraba e cana-de-açúcar. Ser Estud Agron 1:1–14Google Scholar
  81. Nunes MA, Correia MM (1983) Regulação estomática da água disponivel no solo em Coffea arabica L. (cvs Caturra, Catuai e Harrar). Ser Estud Agron 10:83–90Google Scholar
  82. Oliveira JG, Alves PLCA, Magalhães AC (2002) The effect of chilling on the photosynthetic activity in coffee (Coffea arabica L.) seedlings – the protective action of chloroplastid pigments. Braz J Plant Physiol 14:95–104Google Scholar
  83. Pinheiro HA, DaMatta FM, Chaves ARM et al (2005) Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Ann Bot 96:101–108PubMedCrossRefGoogle Scholar
  84. Pinochet J, Cordero D, Berrocal A (1986) Fluctuacion estacional de poblaciones de nematodos em dos cafetales em Panama. Turrialba 36:149–156Google Scholar
  85. Rena AB, Barros RS, Maestri M et al (1994) Coffee. In: Schaffer B, Andersen PC (eds) Handbook of Environmental Physiology of Tropical Fruit Crops: Sub-Tropical and Crops. Vol. 2. CRC Press, Boca RatonGoogle Scholar
  86. Rena AB, Guimarães PTG (2000) Sistema radicular do cafeeiro: estrutura, distribuição, atividade e fatores que o influenciam. EPAMIG, serie documentos # 37, Belo HorizonteGoogle Scholar
  87. Rodrigues ACFO, Abrantes IMO, Melillo MT et al (2000) Ultrastructural response of coffee roots to root-knot nematodes, Meloidogyne exigua and M. megadora. Nematropica 30:201–210Google Scholar
  88. Rodrigues IFD, Crozzoli R (1995) Efectos del nematode agallador Meloidogyne exigua sobre el crecimiento de plantas de cafe en vivero. Nematol Mediterr 23:325–328Google Scholar
  89. Ronquim JC, Prado CHBA, Novaes P et al (2006) Carbon gain in Coffea arabica during clear and cloudy days in the wet season. Exper Agric 42:147–164CrossRefGoogle Scholar
  90. Santos JM, Ferraz S (1977) Efeito de exsudatos radiculares e temperatura sobre a eclosão de larvas de Meloidogyne exigua Göldi, 1887. Proceedings V Congr Bras Pesqu Cafeeiras, no paginationGoogle Scholar
  91. Santos JM, Ferraz S, Oliveira LM (1981) Efeitos do parasitismo de Meloidogyne exigua sobre a absorção e translocação de nutrientes em mudas de cafeeiro. Fitopatol Bras 6:333–340Google Scholar
  92. Schmitt DP, Riggs RD (1989) Population dynamics and management of Heterodera glycines. Agric Zool Rev 3:253–269Google Scholar
  93. Serracin M, Schmitt DP (2000) Meloidogyne konaensis and coffee rootstock interactions at two moisture regimes in four soils. Nematropica 32:65–74Google Scholar
  94. Sikora RA, Carter WW (1987) Nematode interactions with fungal and bacterial plant pathogens – fact or fantasy. In: Veech JA, Dickson DW (eds) Vistas on Nematology. Society of Nematologists, HyattsvilleGoogle Scholar
  95. Silva CP (2005) Efeito do nematóide Meloidogyne exigua no crescimento e fisiologia do cafeeiro (Coffea arabica L.). Universidade Estadual do Norte Fluminense Darcy Ribeiro, BS dissertation, Campos dos GoytacazesGoogle Scholar
  96. Silva RV, Oliveira RDL, Pereira AA et al (2007) Respostas de genótipos de Coffea spp. a diferentes populações de Meloidogyne exigua. Fitopatol Bras 32:205–212Google Scholar
  97. Souza MC (2006) Análise fisiológica dos danos causados ao cafeeiro pelo nematóide-das-galhas (Meloidogyne sp.). Universidade Estadual do Norte Fluminense Darcy Ribeiro, BS dissertation, Campos dos GoytacazesGoogle Scholar
  98. Souza RM, Volpato AR, Viana AP (2008a) Epidemiology of Meloidogyne exigua in an upland coffee plantation in Brazil. Nematol Mediterr, in press Google Scholar
  99. Souza RM, Volpato AR, Viana AP (2008b) Field assessment of different sampling strategies for coffee plantations parasitized by Meloidogyne exigua. Nematropica 37:345–355Google Scholar
  100. Tronconi NM, Ferraz S (1985) Comportamento de Meloidogyne exigua em mudas de cafeeiro plantadas em diferentes tipos de solo. Fitopatol Bras 10:356Google Scholar
  101. Tronconi NM, Ferraz S, Santos JM et al (1986). Influência da temperatura na patogenicidade e reprodução de Meloidogyne exigua em mudas de cafeeiro. Nematol Bras 10:69–83Google Scholar
  102. Vaast Ph, Caswell-Chen EP, Zasoski RJ (1998) Effects of two endoparasitic nematodes (Pratylenchus coffeae and Meloidogyne konaensis) on ammonium and nitrate uptake by arabica coffee (Coffea arabica L.) App Soil Ecol 10:171–178CrossRefGoogle Scholar
  103. Villain L, Anzueto F, Hernandez A et al (1999) Los nematodos parasitos del cafeto. In: Bertrand B, Rapidel B (eds) Desafios de la caficultura em centroamerica. CIRAD/ICCA-PROMECAFE, San JoseGoogle Scholar
  104. Villalba-Gault D, Fernandez-Borrero O, Baeza-Aragon CA (1983) Ciclo de vida de Meloidogyne incognita raza 5 (Kofoid and White 1919) Chitwood 1949, em Coffea arabica variedad Caturra 1. Cenicafé 34:16–33Google Scholar
  105. Von Mende N (1997) Invasion and migration behaviour of sedentary nematodes. In: Fenoll C, Grundler FMW, Ohl SA (eds) Cellular and molecular aspects of plant-nematode interactions. Kluwer Academic Publishers, DordrechtGoogle Scholar
  106. Vovlas N, Di Vito M (1991) Effect of root-knot nematodes Meloidogyne incognita and M. javanica on the growth of coffee (Coffea arabica L.) in pots. Nematol Mediterr 19:253–258Google Scholar
  107. Went FW (1957) The experimental control of plant growth. Chronica Botanica. An International Biological and Agricultural Series # 17. Ronald Press, New YorkGoogle Scholar
  108. Wilcox-Lee D, Loria D (1987) Effects of nematode parasitism on plant-water relations. In: Veech JA, Dickson DW (eds) Vistas on Nematology. Society of Nematologists, HyattsvilleGoogle Scholar
  109. Wormer TM (1965) The effect of soil moisture, nitrogen fertilization and some meteorological factors on stomatal aperture of Coffeae arabica L. Ann Bot 29:523Google Scholar
  110. Wyss U (2002) Feeding behaviour of plant-parasitic nematodes. In: Lee DL (ed) The biology of nematodes. Taylor and Francis, LondonGoogle Scholar
  111. Zhang F, Schmitt DP (1995a) Embryogenesis and postinfection development of Meloidogyne konaensis. J. Nematol 27:103–108Google Scholar
  112. Zhang F, Schmitt DP (1995b) Relationship of Meloidogyne konaensis population densities to coffee growth. Plant Dis 79:446–449Google Scholar
  113. Zhang F, Schmitt DP (1995c) Spatial-temporal patterns of Meloidogyne konaensis on coffee in Hawaii. J Nematol 27:109–113Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ricardo M. Souza
    • 1
  • Ricardo Bressan-Smith
  1. 1.Universidade Estadual do Norte Fluminense Darcy Ribeiro/CCTA/LEFCampos dos GoytacazesBrazil

Personalised recommendations