Skip to main content

Neuromodulation of Mechanosensory Input to the Insect CNS

  • Chapter
Book cover Mechanosensitivity of the Nervous System

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 2))

Abstract

Mechanosensory input to the insect central nervous system (CNS) is mediated by cholinergic neurones. There is good evidence that the gain of such inputs can be modulated under different physiological conditions. This review focuses upon identification of the neuromodulators involved and the mechanisms by which they influence transmission mediated at cholinergic synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman JS, Tyrer NM (1977) The locust wing hinge stretch receptors. I. Primary sensory neurones with enormous central arborizations. J Comp Neurol 172:409–430.

    Article  PubMed  CAS  Google Scholar 

  • Altman JS, Shaw MK, Tyrer NM (1980) Input synapses onto a sensory neurone revealed by cobalt electron microscopy. Brain Res 189:245–250.

    Article  PubMed  CAS  Google Scholar 

  • Anderson LJ, Pitman RM (1994) Muscarinic receptors on the soma membrane of an identified motoneurone of the locust, Schistocerca gregaria. J. Physiol (Lond) 480:101P

    Google Scholar 

  • Anthony NM, Harrison JB, Sattelle DB (1993) GABA receptor molecules. In: Comparative molecular neurobiology (Ed. Y. Pichon), pp. 172–209. Basel: Birkhauser Verlag

    Google Scholar 

  • Bicker G, Schafer S, Ottersen OP, Storm-Mathisen J (1988) Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems. J Neurosci 8:2108–2122.

    PubMed  CAS  Google Scholar 

  • Birmingham JT, Tauck DL (2003) Neuromodulation in invertebrate sensory systems: from biophysics to behavior. J Exp Biol 206: 3541–3546.

    Article  PubMed  Google Scholar 

  • Boyan GS (1988) Presynaptic inhibition of identified wind-sensitive afferents in the cercal system of the locust. J Neurosci 8:2748–2757.

    PubMed  CAS  Google Scholar 

  • Bräunig P (1991) Subesophageal DUM neurones innervate the principle neuropils of the locust brain. Philos Trans R Soc Lond B Biol Sci 332:221–240.

    Article  Google Scholar 

  • Bräunig P, Burrows M (2004) Projection patterns of posterior dorsal unpaired median neurones of the locust subesophageal ganglion. J Comp Neurol 478:164–175.

    Article  PubMed  Google Scholar 

  • Breer H, Knipper M (1984) Characterization of acetylcholine release from insect synaptosomes. Insect Biochem 14:337–344.

    Article  CAS  Google Scholar 

  • Burrows M (1975) Monosynaptic connexions between wing stretch receptors and flight motor neurones of the locust. J Exp Biol 62:189–219.

    PubMed  CAS  Google Scholar 

  • Burrows M (1996) The neurobiology of an insect brain. New York: Oxford University Press.

    Google Scholar 

  • Burrows M, Laurent G (1993) Synaptic potentials in the central terminals of locust proprioceptive afferents generated by other afferents from the same sense organ. J Neurosci 13:808–819.

    PubMed  CAS  Google Scholar 

  • Butt SJB, Pitman RM (2002) Modulation by 5-hydroxytryptamine of nicotinic acetylcholine responses recorded from an identified cockroach (Periplaneta americana) motoneurone. Europ J Neurosci 15:429–438

    Article  Google Scholar 

  • Butt SJB, Pitman RM (2005) Indirect phosphorylation-dependent modulation of postsynaptic nicotinic acetylcholine responses by 5-hydroxytryptamine. Europ J Neurosci 21:1181–1188

    Article  CAS  Google Scholar 

  • Claassen DE, Kammer AE (1986) Effects of octopamine, dopamine and serotonin on production of flight motor output by thoracic ganglia of Manduca sexta. J Neurobiol 17:1–14.

    Article  PubMed  CAS  Google Scholar 

  • David JA, Pitman RM (1993) The pharmacology of α-bungarotoxin-resistant acetylcholine receptors on an identified cockroach motoneurone. J Comp Physiol 172:359–368

    Article  Google Scholar 

  • David JA, Pitman RM (1994) Inositol-1,4,5-trisphosphate production is linked to muscarinic acetylcholine receptors in the CNS of the cockroach, Periplaneta americana. J Physiol (Lond) 480:97P

    Google Scholar 

  • David JA, Pitman RM (1995) Muscarinic agonists modulate calcium-dependent currents in an identified insect neurone. Brain Res 669:153–156

    Article  PubMed  CAS  Google Scholar 

  • David JA, Pitman RM (1996a) Modulation of Ca2+ and K+ conductances in an identified insect neurone by the activation of an α-bungarotoxin-resistant cholinergic receptor. J Exp Biol 199:1921–1930

    CAS  Google Scholar 

  • David JA, Pitman RM (1996b) Muscarinic receptor activation modulates ligand-gated ion channels via changes in intracellular calcium. Proc R Soc Lond B 263:469–474

    Article  CAS  Google Scholar 

  • David JA, Pitman RM (1996c) Cyclic-AMP regulation of calcium-dependent K channels in an insect central neurone. Neurosci Lett 203:151–154

    Article  CAS  Google Scholar 

  • David JA, Sattelle DB (1984) Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneurone of the cockroach (Periplaneta americana). J Exp Biol 108:119–136

    CAS  Google Scholar 

  • David JA, Sattelle DB (1990) Ionic basis of membrane potential and of acetylcholine-induced currents in the cell body of the cockroach fast coxal depressor motor neurone. J Exp Biol 151:21–39.

    CAS  Google Scholar 

  • Drummond AH, Raeburn CA (1984) The interaction of lithium with thyrotropin-releasing hormone-stimulated lipid metabolism in GH3 pituitary tumour cells. Biochem J 224:129–136

    PubMed  CAS  Google Scholar 

  • Dubas F (1990) Inhibitory effect of L-glutamate on the neuropil arborizations of flight motoneurones in locusts. J Exp Biol 148:501–508.

    CAS  Google Scholar 

  • Dubas F (1991) Actions of putative amino-acid neurotransmitters on the neuropil aborizations of locust flight motoneurones. J Exp Biol 155:337–356.

    CAS  Google Scholar 

  • Duch C, Pflüger, HJ (1999) DUM neurones in locust flight: a model system for amine-medicated peripheral adjustments to the requirements of a central motor program. J Comp Neurol 184:489–499.

    CAS  Google Scholar 

  • Evans PD (1980) Biogenic Amines in the Insect Nervous System. Adv Insect Physiol 15:317–473

    Article  CAS  Google Scholar 

  • Gettrup E (1962) Thoracic proprioceptors in the flight system of locusts. Nature (Lond) 193:498–499.

    Article  Google Scholar 

  • Gray JR, Robertson RM (1996) Structure of the forewing stretch receptor axon in immature and mature adult locusts. J Comp Neurol 365:268–277.

    Article  PubMed  CAS  Google Scholar 

  • Hancox JC, Pitman RM (1991) Plateau potentials drive axonal impulse bursts in insect motoneurones. Proc R Soc Lond B 244:33–38.

    Article  Google Scholar 

  • Hancox JC, Pitman RM (1992) A time-dependent excitability change in the soma of an identified insect motoneurone. J Exp Biol 162:251–263.

    Google Scholar 

  • Hue B, Lapied B, Mal´ecot CO (1989) Do presynaptic muscarinic receptors regulate acetylcholine release in the central nervous system of the cockroach Periplaneta americana? J Exp Biol 142:447–451.

    CAS  Google Scholar 

  • Judge S, Leitch B (1999a) GABA immunoreactivity in processes presynaptic to the locust wing stretch receptor neurone. J Comp Neurol 407:103–114.

    Article  CAS  Google Scholar 

  • Judge S, Leitch B (1999b) Modulation of transmitter release from the locust forewing stretch receptor neurone by GABAergic interneurones activated via muscarinic receptors. J Neurobiol 40:420–431.

    Article  CAS  Google Scholar 

  • Kerkut GA, Pitman RM, Walker RJ (1969) Sensitivity of neurones of the insect central nervous system to iontophoretically applied acetylcholine or GABA. Nature, Lond 222:1075–1076.

    Article  CAS  Google Scholar 

  • Katz PS, Frost WN (1966) Intrinsic neuromodulation: altering neuronal circuits from within. Trends Neurosci 2:54–61.

    Google Scholar 

  • Knipper M, Breer H (1988) Subtypes of muscarinic receptors in insect nervous system. Comp Biochem Physiol 90C:275–280.

    CAS  Google Scholar 

  • Le Corronc H, Hue B (1993) Pharmacological and electrophysiological characterization of a postsynaptic muscarinic receptor in the central nervous system of the cockroach. J Exp Biol 181:257–278.

    Google Scholar 

  • Le Corronc H, Lapied B, Hue B (1991) M2-like presynaptic receptors modulate acetylcholine release in the cockroach (Periplaneta americana) central nervous system. J Insect Physiol 37:647–652.

    Article  Google Scholar 

  • Lees G, Beadle DJ, Neumann R, Benson JA (1987) Responses to GABA by isolated insect neuronal somata: pharmacology and modulation by a benzodiazipine and a barbiturate. Brain Res 401:267–278.

    Article  PubMed  CAS  Google Scholar 

  • Leitch B, Pitman RM (1995) Modulation of transmitter release from the terminals of the locust wing-stretch receptor neurone by muscarinic antagonists. J Neurobiol 28:455–464.

    Article  PubMed  CAS  Google Scholar 

  • Leitch B, Watkins BL, Burrows M (1993) Distribution of acetylcholine receptors in the central nervous system of adult locusts. J Comp Neurol 1:47–58.

    Article  Google Scholar 

  • Leitch B, Judge S, Pitman RM (2003) Octopaminergic modulation of synaptic transmission between an identified sensory afferent and flight motoneurone in the locust. J Comp Neurol 462:55–70.

    Article  PubMed  CAS  Google Scholar 

  • Libersat F, Pflüger H-J (2004) Monoamines and the orchestration of behaviour. Bioscience 54:17–25

    Article  Google Scholar 

  • Lutz EM, Tryer NM (1988) Immunohistochemical localization of serotonin and choline acetyltransferase in sensory neurones of the locust. J Comp Neurol 267:335–342.

    Article  PubMed  CAS  Google Scholar 

  • Orchard I, Ramirez J-M, Lange AB (1993) A multifunctional role for octopamine in locust flight. Annu Rev Entomol 38:227–249.

    Article  CAS  Google Scholar 

  • Parker D, Newland PL (1995) Cholinergic synaptic transmission between proprioceptive afferents and a hind leg motoneurone in the locust. J Neurophysiol 73:586–594.

    PubMed  CAS  Google Scholar 

  • Pearson KG, Wong RKS, Fourtner CR (1976) Connexions between hairplate afferents and motoneurones in the cockroach leg. J Exp Biol 64:251–266.

    PubMed  CAS  Google Scholar 

  • Pinnock RD, David JA, Sattelle DB (1988) Ionic events following GABA receptor activation in an identified insect motor neurone. Proc R Soc, Lond. B 232:457–470

    CAS  Google Scholar 

  • Pitman RM (1985) Nervous system. In: Kerkut GA, Gilbert LI, editors. Comprehensive insect physiology, biochemistry and pharmacology. Vol. 11. Oxford: Pergamon. P5–54.

    Google Scholar 

  • Pitman RM, Kerkut GA (1970) Comparison of the actions of iontophoretically applied acetylcholine and gamma aminobutryic acid with the EPSP and IPSP in cockroach central neurones. Comp Gen Pharmacol 1:221–230.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez J-M, Orchard J (1990) Octopaminergic modulation of the forewing stretch receptor in the locust Locusta migratoria. J Exp Biol 149:255–279.

    Google Scholar 

  • Ramirez JM, Pearson KG (1991a) Octopamine induces bursting and plateau potentials in insect neurones. Brain Res 549:332–337

    Article  CAS  Google Scholar 

  • Ramirez JM, Pearson KG (1991b) Octopaminergic modulation of interneurones in the flight system of the locust. J Neurophysiol 66:1522–1537

    CAS  Google Scholar 

  • Richardson AC, Leitch B (2007) Identification of the neurotransmitters involved in modulation of transmitter release from the central terminals of the locust wing hinge stretch receptor. J Comp Neurol 502: 794–809.

    Article  PubMed  Google Scholar 

  • Sattelle DB, Pinnock RD, Wafford KA, David JA (1988) GABA receptors on the cell-body of an identified insect motor neurone. Proc R Soc Lond B 232:443–456.

    Article  PubMed  CAS  Google Scholar 

  • Staudacher EM, Gebhardt M, Durr V (2005) Antennal movements and mechanoreception: Neurobiology of active tactile sensors. Adv Insect Physiol 32: 49–205.

    Article  CAS  Google Scholar 

  • Stevenson PA, Meuser S (1997) Octopaminergic innervation and modulation of a locust flight steering muscle. J Exp Biol 200:633–642.

    PubMed  CAS  Google Scholar 

  • Thomas MV (1984) Voltage-clamp analysis of a calcium-mediated potassium conductance in cockroach (Periplaneta americana) central neurones. J Physiol (Lond) 350:159–178

    CAS  Google Scholar 

  • Torkkeli PH, Panek I (2002) Neuromodulation of Arthropod Mechanosensory Neurones. Microsc Res Tech 58:299–311.

    Article  PubMed  CAS  Google Scholar 

  • Trimmer BA, Berridge MJ (1985) Inositol phosphates in the insect nervous system. Insect Biochem 15:811–815

    Article  CAS  Google Scholar 

  • Trimmer BA, Weeks JC (1989) Effects of nicotinic and muscarinic agents on an identified motoneurone and its direct afferent inputs in larval Manduca sexta. J Exp Biol 144:303–337.

    Google Scholar 

  • Trimmer BA, Weeks JC (1989) Effects of nicotinic and muscarinic agents on an identified motoneurone and its direct afferent inputs in larval Manduca sexta. J Exp Biol 144:303–337.

    Google Scholar 

  • Trimmer BA, Weeks JC (1993) Muscarinic acetylcholine receptors modulate the excitability of an identified insect motoneurone. J Neurophysiol 69:1821–1836.

    PubMed  CAS  Google Scholar 

  • Tryer NM, Turner JD, Altman JS (1984) Identifiable neurones in the locust central nervous system that react with antibodies to serotonin. J Comp Neurol 227:313–330.

    Article  Google Scholar 

  • Watson AHD (1984) The dorsal unpaired median neurones of the locust metathoracic ganglion: neuronal structure and diversity, and synapse distribution. J Neurocytol 13:303–327.

    Article  PubMed  CAS  Google Scholar 

  • Watson AHD (1988) Antibodies against GABA and glutamate label neurones with morphologically distinct synaptic vesicles in the locust central nervous system. Neuroscience 26:33–44.

    Article  PubMed  CAS  Google Scholar 

  • Watson AHD (1990) Ultrastructural evidence for GABAergic input onto cercal afferents in the locust (Locusta migratoria). J Exp Biol 148:509–515.

    Google Scholar 

  • Watson AHD (1992) Presynaptic modulation of sensory afferents in the invertebrate and vertebrate nervous system. Comp Biochem Physiol A 103:227–239.

    Article  CAS  Google Scholar 

  • Watson AHD, Burrows M (1987) Immunocytochemical and pharmacological evidence for GABAergic spiking local interneurones in the locust. J Neurosci 7:1741–1751.

    PubMed  CAS  Google Scholar 

  • Watson AHD, England RCD (1991) The distribution of and interactions between GABA-IR and non-immunoreactive processes presynaptic to afferents from campaniform sensilla on the trochanter of the locust leg. Cell Tissue Res 266:331–341.

    Article  Google Scholar 

  • Watson AHD, Pflüger H-J (1984) Distribution of input synapses from processes exhibiting GABA-like or glutamate-like immunoreactivity onto terminals of prosternal filiform afferents in the locust. J Comp Neurol 343:617–629.

    Article  Google Scholar 

  • Watson AHD, Storm-Mathisen J, Ottersen OP (1991) GABA and glutamate-like immunoreactivity in processes presynaptic to afferents from hair plates on the proximal joints of the locust leg. J Neurocytol 20:796–809.

    Article  PubMed  CAS  Google Scholar 

  • Watson AHD, Burrows M, Leitch B (1993) GABA-IR in processes presynaptic to the terminals of afferents from a locust leg proprioceptor. J Neurocytol 22:547–557.

    Article  PubMed  CAS  Google Scholar 

  • Whim MD, Evans PD (1988) Octopaminergic modulation of flight muscles in the locust. J Exp Biol 134:247–266.

    Google Scholar 

  • Wilson DM, Gettrup E (1963) A stretch reflex controlling wingbeat frequency in grasshoppers. J Exp Biol 40:171–185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Leitch, B., Pitman, R.M. (2009). Neuromodulation of Mechanosensory Input to the Insect CNS. In: Kamkim, A., Kiseleva, I. (eds) Mechanosensitivity of the Nervous System. Mechanosensitivity in Cells and Tissues, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8716-5_9

Download citation

Publish with us

Policies and ethics