Skip to main content

Mechanical Properties of Brain Tissue: Characterisation and Constitutive Modelling

  • Chapter
Mechanosensitivity of the Nervous System

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 2))

Abstract

The head is often considered as the most critical region of the human body for life-threatening injuries sustained in accidents. In order to develop effective protective measures, a better understanding of the process of injury development in the brain is required. Finite Element (FE) models are being developed, in order to predict the mechanical response of the contents of the head during impact. To obtain accurate predictions of the mechanical response of the brain, an accurate description of the mechanical behaviour of brain tissue is required. However, up to now no universally accepted data set for the constitutive response of brain tissue exists. The large variation in material properties reported may be caused by differences in testing methods and protocols used. An overview of studies on the mechanical properties of brain tissue is presented, focusing on testing methods. Furthermore, the large strain mechanical response of brain tissue as well as modelling approaches for this behaviour are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arbogast KB, Margulies SS (1997) Regional differences in mechanical properties of the porcine central nervous system. In Proceedings of the 41st Stapp Car Crash Conference, number SAE 973336, pp. 293–300.

    Google Scholar 

  • Arbogast KB, Margulies SS (1998) Material characterization of the brainstem from oscillatory shear tests. J. Biomech., 31(9):801–807.

    Article  PubMed  CAS  Google Scholar 

  • Arbogast KB, Meaney DF, Thibault LE (1995) Biomechanical characterization of the constitutive relationship for the brainstem. In Proceedings of the 39th Stapp Car Crash Conference, number SAE 952716, pp. 153–159.

    Google Scholar 

  • Arbogast KB, Prange MT, Meaney DF, Margulies, SS (1997) Properties of cerebral gray and white matter undergoing large deformation. Symp. Proc. Center for Disease Control, Wayne State University, pp. 33–39.

    Google Scholar 

  • Bain AC, Meaney DF (2000) Tissue-level thresholds for axonal damage in an experimental model of cerebral nervous system white matter injury. J. Biomech. Eng -T. ASME, 122:615–622.

    Article  CAS  Google Scholar 

  • Bilston LE, Liu Z, Phan-Thien N (1997) Linear viscoelastic properties of bovine brain tissue in shear. Biorheology, 34(6):377–385.

    Article  PubMed  CAS  Google Scholar 

  • Bilston LE, Liu Z, Phan-Thien N (2001) Large strain behavior of brain tissue in shear: Some experimental data and differential constitutive model. Biorheology, 38(3):335–345.

    PubMed  CAS  Google Scholar 

  • Brands DWA (2002) Predicting Brain Mechanics During Closed Head Impact; Numerical and Constitutive Aspects. PhD thesis, Eindhoven University of Technology, The Netherlands.

    Google Scholar 

  • Brands DWA, Bovendeerd PHM, Peters GWM, Wismans JSHM (2000) The large shear strain dynamic behavior of in-vitro porcine brain tissue and the silicone gel model material. In Proceedings of the 44th Stapp Car Crash Conference, number SAE 200001-SC17, pp. 249–260.

    Google Scholar 

  • Brands DWA, Bovendeerd PHM, Peters GWM, Wismans JSHM, Paas MHJW, van Bree JLMJ (1999) Comparison of the dynamic behavior of the brain tissue and two model materials. In Proceedings of the 43rd Stapp Car Crash Conference, number SAE 99SC21, pp. 57–64.

    Google Scholar 

  • Brands DWA, Peters GWM, Bovendeerd PHM (2004) Design and numerical implementation of a 3-d non-linear viscoelastic constitutive model for brain tissue during impact. J. Biomech., 37(1):127–134.

    Article  PubMed  CAS  Google Scholar 

  • Brooks CA, Gabella B, Hoffman R, Sosin D, Whiteneck G (1997) Traumatic brain injury: designing and implementing a population-based follow-up system. Arch Phys Med Rehabil, 78:S26–S30.

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Bilston LE (2007) Unconfined compression of white matter. J. Biomech., 40(1):117–124.

    Article  PubMed  Google Scholar 

  • Claessens MHA, Sauren F, Wismans JSHM (1997) Modelling of the human head under impact conditions: A parametric study. In Proceedings of the 41th Stapp Car Crash Conference, number SAE 973338, page 315328.

    Google Scholar 

  • Darvish KK, Crandall JR (1999) Investigating nonlinear viscoelastic properties of brain tissue using the forced vibration method. American Society of Biomechanics, 24th Annual Meeting.

    Google Scholar 

  • Darvish KK, Crandall JR (2001) Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med. Eng. Phys., 23(9):633–645.

    Article  PubMed  CAS  Google Scholar 

  • Darvish KK, Takhounts EG, Crandall JR (1998) A dynamic method to develop nonlinear viscoelastic model of brain tissue. Advances in Bioengineering, ASME-BED, 39.

    Google Scholar 

  • Dogson MCH (1962) Colloidal structures of brain. Biorheology, 1(1):21–30.

    Google Scholar 

  • Donnelly BR (1998) Brain tissue material properties: A comparison of results. Biomechanical Research: Experimental and Computational, Proceedings of the 26th International Workshop, 6:47–57.

    Google Scholar 

  • Donnelly BR, Medige J (1997) Shear properties of human brain tissue. J. Biomech. Eng -T. ASME, 119(4):423–432.

    Article  CAS  Google Scholar 

  • Estes MS, McElhaney JH (1970) Response of brain tissue of compressive loading. In Proceedings of the 4th ASME Biomechanics Conf., number 70-BHF-13.

    Google Scholar 

  • Etoh A, Mitaku S, Yamamoto J, Okano K (1994) Ultrasonic absorption anomaly of brain tissue. Jpn. J. Appl. Phys., 33:2874–2879.

    Article  Google Scholar 

  • ETSC (1999) Exposure data for travel risk assessment. Technical report, European Transport Safety Council, Brussels, Belgium.

    Google Scholar 

  • Fallenstein GT, Hulce VD, Melvin JW (1969) Dynamic mechanical properties of human brain tissue. J. Biomech., 2(3):217–226.

    Article  PubMed  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic Properties of Polymers; Third Edition. John Wiley & Sons, New York.

    Google Scholar 

  • Franceschini G, Bigoni D, Regitnig P, Holzapfel GA (2006) Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids, 54(12):2592–2620.

    Article  Google Scholar 

  • Fung Y (1981) Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York.

    Google Scholar 

  • Funk J, Hall G, Crandall J, Pilkey W (2000) Linear and quasi-linear viscoelastic characterization of ankle ligaments. J. Biomech. Eng., 122:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Galford JE, McElhaney JH (1970) A viscoelastic study of scalp, brain, and dura. J. Biomech., 3:211–221.

    Article  PubMed  CAS  Google Scholar 

  • Garo A, Hrapko M, van Dommelen JAW, Peters GWM (2007) Towards a reliable characterisation of the mechanical behaviour of brain tissue: the effects of post-mortem time and sample preparation. Biorheology, (47):51–58.

    Google Scholar 

  • Gefen A, Gefen N, Zhu Q, Raghupathi R, Margulies SS (2003) Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotraum, 20(11):1163–1177.

    Article  Google Scholar 

  • Gefen A, Margulies SS (2004) Are in-vivo and in situ brain tissues mechanically similar? J. Biomech., 37(9):1339–1352.

    Article  PubMed  Google Scholar 

  • Goldman DE, Hueter TF (1956) Tabular data of the velocity and absorption of high-frequency sound in mammalian tissues. J. Acoustical Soc. Am., 28(1): 35–37.

    Article  Google Scholar 

  • Goldsmith W (1972) Biomechanics of head injury. In Fung, YC, Perrone, N, Anliker, M, editors, Biomechanics – Its Foundation and Objectives, pp. 585–634, Prentice–Hall Inc, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Hamhaber U, Sack I, Papazoglou S, Rump J, Klatt D, Braun J (2007) Three-dimensional analysis of shear wave propagation observed by in-vivo magnetic resonance elastography of the brain. Acta Biomater, 3(1):127–137.

    Article  PubMed  CAS  Google Scholar 

  • Henn H (1998) Crash tests and the head injury criterion. Teach. Math. Appl., 17:162–170.

    Article  Google Scholar 

  • Hrapko M, Gervaise H, van Dommelen JAW, Peters GWM, Wismans JSHM (2007a) Identifying the mechanical behaviour of brain tissue in both shear and compression. In Proceedings of the IRCOBI Conference, pp. 143–159.

    Google Scholar 

  • Hrapko M, van Dommelen JAW, Peters GWM, Wismans JSHM (2006) The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheology, 43:623–636.

    PubMed  CAS  Google Scholar 

  • Hrapko M, van Dommelen JAW, Peters GWM, Wismans JSHM (2007b) On the characterisation of the mechanical properties of brain tissue: the influence of test conditions. J. Biomech. Eng., accepted.

    Google Scholar 

  • Koeneman JB (1966) Viscoelastic properties of brain tissue. Unpublished M.S. Thesis, Case Institute of Technology, USA.

    Google Scholar 

  • Kruse SA, Dresner MA, Rossman PJ, Felmlee JP, Jack CR, Ehman RL (1999) Palpation of the brain using magnetic resonance elastography. In Proceedings of the 7th Annual Meeting of ISMRM, page 258.

    Google Scholar 

  • Langlois JA, Rutland-Brown W, Thomas KE (2004) Traumatic brain injury in the united states: Emergency department visits, hospitalizations, and deaths. Technical report, Centers for Disease Control and Prevention, National Center for Injury Prevention and Control.

    Google Scholar 

  • Lin S, Grimm MJ (1998) Characterization of the mechanical properties of brain tissue using ultrasound. Symp. Proc. Center for Disease Control, Wayne State University, pp. 59–64.

    Google Scholar 

  • Lin S, Shieh S, Grimm MJ (1997) Ultrasonic measurements of brain tissue properties. Symp. Proc. Center for Disease Control, Wayne State University, pp. 27–31.

    Google Scholar 

  • Lippert SA, Rang EM, Grimm MJ (2003) The wave-in-a-tube method for estimation of mechanical properties of viscoelastic materials using ultrasound. J. Test. Eval., 31(1):73–78.

    Google Scholar 

  • Lippert SA, Rang EM, Grimm MJ (2004) The high frequency properties of brain tissue. Biorheology, 41(6):681–691.

    PubMed  Google Scholar 

  • Manduca A, Lake DS, Kruse SA, Ehman RL (2003) Spatio-temporal directional filtering for improved inversion of mr elastography images. Med. Image Anal., 7(4):465–473.

    Article  PubMed  CAS  Google Scholar 

  • Manduca A, Oliphant TE, Dresner MA, Mahowald JL, Kruse SA, Amromin E, Felmlee JP, Greenleaf JF, Ehman RL (2001) Magnetic resonance elastography: Non-invasive mapping of tissue elasticity. Med. Image Anal., 5(4):237–254.

    Article  PubMed  CAS  Google Scholar 

  • McCracken PJ, Manduca A, Felmlee J, Ehman RL (2005) Mechanical transient-based magnetic resonance elastography. Magn. Reson. Med., 53(1):628–639.

    Article  PubMed  Google Scholar 

  • McElhaney JH, Melvin JW, Roberts VL, Portnoy HD (1973) Dynamic characteristics of the tissues of the head. In Kenedi, RM, editor, Perspectives in Biomedical Engineering, pp. 215–222, MacMillan Press, London.

    Google Scholar 

  • McElhaney JH, Roberts VL, Hilyard JF (1976) Handbook of human tolerance, Japan Automobile Research Institute Inc., Tokyo, Japan.

    Google Scholar 

  • Mendis KK, Stalnaker RL, Advani SH (1995) A constitutive relationship for large deformation finite element modeling of brain tissue. J. Biomech. Eng -T. ASME, 117(3):279–285.

    Article  CAS  Google Scholar 

  • Metz H, McElhaney J, Ommaya AK (1970) A comparison of the elasticity of live, dead, and fixed brain tissue. J. Biomech., 3:453–458.

    Article  PubMed  CAS  Google Scholar 

  • Miller K (1997) Constitutive modeling of brain tissue: Experiment and theory. J. Biomech., 30(11–12):1115–1121.

    Article  PubMed  CAS  Google Scholar 

  • Miller K (1999) Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. J. Biomech., 32(5):531–537.

    Article  PubMed  CAS  Google Scholar 

  • Miller K (2000) Biomechanics of soft tissues. Med. Sci. Monit., 6(1):158–167.

    PubMed  CAS  Google Scholar 

  • Miller, K. (2001). How to test very soft biological tissue in extension. J. Biomech., 34(5):651–657.

    Article  PubMed  CAS  Google Scholar 

  • Miller K (2005) Method of testing very soft biological tissues in compression. J. Biomech., 38(1):153–158.

    PubMed  Google Scholar 

  • Miller K, Chinzei K (2002) Mechanical properties of brain tissue in tension. J. Biomech., 35(4):483–490.

    Article  PubMed  Google Scholar 

  • Miller K, Chinzei K, Orssengo G, Bednarz P (2000) Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech., 33(11):1369–1376.

    Article  PubMed  CAS  Google Scholar 

  • Morrison III B, Cater HL, Wang CC-B, Thomas FC, Hung CT, Ateshian GA, Sundstrom LE (2003) A tissue level tolerance criterion for living brain developed with an in-vitro model of traumatic mechanical loading. Stapp Car Crash J., 47:93–106.

    Google Scholar 

  • Nicolle S, Lounis M, Willinger R (2004) Shear properties of brain tissue over a frequency range relevant for automotive impact situations: New experimental results. Stapp Car Crash J., 48:239–258.

    PubMed  Google Scholar 

  • Nicolle S, Lounis M, Willinger R, Palierne JF (2005) Shear linear behaviour of brain tissue over a large frequency range. Biorheology, 42(3):209–223.

    PubMed  CAS  Google Scholar 

  • Ning X, Zhu Q, Lanir Y, Margulies SS (2006) A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. J. Biomech. Eng. -T. ASME, 128(6):925–933.

    Article  Google Scholar 

  • Ommaya AK (1968) Mechanical properties of tissue of the nervous system. J. Biomech., 1(2):127–138.

    Article  PubMed  CAS  Google Scholar 

  • Peden M, Scurfield R, Sleet D, Mohan D, Hyder AA, Jarawan E, Mathers C (2004) World report on road traffic injury prevention. Technical report, World Health Organization.

    Google Scholar 

  • Peters GWM, Baaijens FPT (1997) Modelling of non-isothermal viscoelastic flows, J. Non-Newtonian Fluid Mech., 68:205–224.

    Article  CAS  Google Scholar 

  • Peters GWM, Meulman JH, Sauren AHJ (1997) The applicability of the time/temperature superposition principle to brain tissue. Biorheology, 34(2):127–138.

    Article  PubMed  CAS  Google Scholar 

  • Prange MT, Margulies SS (1999) Anisotropy and inhomogeneity of the mechanical properties of brain tissue at large deformation. Symp. Proc. Center for Disease Control, Wayne State University.

    Google Scholar 

  • Prange MT, Margulies SS (2002) Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng -T. ASME, 124(2):244–252.

    Article  Google Scholar 

  • Prange MT, Meaney DF, Margulies SS (1998a) Directional properties of gray and white brain tissue. Symp. Proc. Center for Disease Control, Wayne State University, pp. 65–71.

    Google Scholar 

  • Prange MT, Meaney DF, Margulies SS (1998b) Directional properties of gray and white brain tissue. Symp. Proc. Center for Disease Control, Wayne State University.

    Google Scholar 

  • Prange MT, Meaney DF, Margulies SS (2000) Defining brain mechanical properties: Effects of region, direction, and species. Proceedings of the 44th Stapp Car Crash Conference, (2000-01-SC15):205–213.

    Google Scholar 

  • Shen F, Tay TE, Li JZ, Nigen S, Lee PVS, Chan HK (2006) Modified bilston nonlinear viscoelastic model for finite element head injury studies. J. Biomech. Eng -T. ASME, 5(128):797–801.

    Article  Google Scholar 

  • Shuck LZ, Advani SH (1972) Rheological response of human brain tissue in shear. J. Basic Eng., 94:905–911.

    Google Scholar 

  • Takhounts EG, Crandall JR, Darvish KK (2003) On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J., 47:107–134.

    PubMed  Google Scholar 

  • Takhounts EG, Crandall JR, Matthews BT (1999) Shear properties of brain tissue using non-linear green-rivlin viscoelastic constitutive equation. Injury Biomechanics Research, Proc. of the 27th International Workshop, 11:141–156.

    Google Scholar 

  • Thibault KL, Margulies SS (1996) Material properties of the developing porcine brain. In Proceedings of the IRCOBI Conference, pp. 75–85.

    Google Scholar 

  • Thibault KL, Margulies SS (1998) Age-dependent material properties of the porcine cerebrum: Effect on pediatric inertial head injury criteria. J. Biomech., 31(12):1119–1126.

    Article  PubMed  CAS  Google Scholar 

  • Thibault LE, Gennarelli TA (1985) Biomechanics and craniocerebral trauma. Central Nervous System Trauma, Status Report, National Institutes of Health, 24:379–389.

    Google Scholar 

  • van Turnhout M, Oomens C, Peters G, Stekelenburg A (2005) Passive transverse mechanical properties as a function of temperature of rat skeletal muscle in-vitro. Biorheology, 42(3):193–207.

    PubMed  Google Scholar 

  • Velardi F, Fraternali F, Angelillo M (2006) Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol., 5(1):53–61.

    Article  CAS  Google Scholar 

  • Versace J (1971) A review of the severity index. In Proceedings of the 15th Stapp Car Crash Conference, number SAE 710881, pp. 771–796.

    Google Scholar 

  • Viano D, von Holst H, Gordon E (1997) Serious brain injury from traffic related causes: Priorities for primairy prevention. Accident Anal. Prev., 29:811–816.

    Article  CAS  Google Scholar 

  • Wang HC, Wineman AS (1972) A mathematical model for the determination of viscoelastic behavior of brain in-vivo. J. Biomech., 5:431–446.

    Article  PubMed  CAS  Google Scholar 

  • Waxweiler R, Thurman D, Sniezek J, Sosin D, Niell J (1995) Monitoring the impact of traumatic brain injury: A review and update. J. Neurotrauma, 12:509–516.

    Article  PubMed  CAS  Google Scholar 

  • Woo S-Y, Hollis J, Adams D, Lyon R, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex: The effects of specimen age and orientation. Am. J. Sports Medicine, 19:217–225.

    Article  CAS  Google Scholar 

  • Wu JZ, Gong RG, Schopper AW (2004) Analysis of effects of friction on the deformation behaviour of soft tissues in unconfined compression tests. J. Biomech., 37:147– 155.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

van Dommelen, J., Hrapko, M., Peters, G. (2009). Mechanical Properties of Brain Tissue: Characterisation and Constitutive Modelling. In: Kamkim, A., Kiseleva, I. (eds) Mechanosensitivity of the Nervous System. Mechanosensitivity in Cells and Tissues, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8716-5_12

Download citation

Publish with us

Policies and ethics