Advertisement

Sensor Technology

  • Greg A. Gerhardt
  • Patrick A. Tresco

This chapter deals with an overview of sensors used in the collection of data for Brain-Computer Interface (BCI) technology. For the purposes of this chapter, we divide sensor technologies into two basic categories. First, we discuss “invasive” technologies, which entail brain surgery procedures for implantation involving primarily multielectrode recordings from arrays of microelectrodes implanted directly into the brain to measure action potentials from single cells. This is a major growth area for sensor technologies and will be the major focus of this chapter. However, we caution that most of this technology is under development in animal models and is not yet approved for human use. In addition, measurements from subdural or epidural strips of electrode arrays used to record cortical potentials somewhat analogous to EEG-type recordings on the surface of the skull will be discussed, as this is currently the greatest application for use of these invasive electrodes in humans for (primarily) epilepsy surgery. However, this could help increase the growth of other BCI applications. Second, we discuss “noninvasive” technologies, which primarily involve multielectrode EEG recording arrays of “wet” silver (Ag) or gold (Au) conducting paste electrodes that are placed on the surface of the skull to record EEG activity. These electrodes are commercially available from a number of sources, but surprisingly, there has been limited growth in this area. We caution that “noninvasive” electrodes have largely been used acutely and may be more invasive to the scalp when used in future, more chronic, applications of BCI technology by humans at home or work. Additional tech-nology development in this area will be briefly discussed.

Keywords

Electrode Array Recording Site Sensor Technology Epilepsy Surgery Local Field Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akin, T., B. Ziaie, S.A. Nikles, and K. Najafi. 1999. A modular micromachined high-density connector system for biomedical applications. IEEE Trans. Biomed. Eng. 46(4):471–480.CrossRefGoogle Scholar
  2. Anderson, D.J., K. Najafi, S.J. Tanghe, D.A. Evans, K.L. Levy, J.F. Hetke, X.L. Xue, J.J. Zappia,and K.D. Wise. 1989. Batch-fabricated thin-film electrodes for stimulation of the central auditory system. IEEE Trans. Biomed. Eng. 36:693–704.CrossRefGoogle Scholar
  3. Bai, Q., and K.D. Wise. 2001. Single-unit neural recording with active microelectrode arrays.IEEE Trans. Biomed. Eng. 48:911–920.CrossRefGoogle Scholar
  4. Bai, Q., K.D. Wise, and D.J. Anderson. 2000. A high-yield micro assembly structure for three dimensional microelectrode. IEEE Trans. Biomed. Eng. 47:281.CrossRefGoogle Scholar
  5. Baumeister, A.A. 2006. Serendipity and the cerebral localization of pleasure. J. His. Neurosci. 15(2):92–98.CrossRefGoogle Scholar
  6. BeMent, S.L., K.D. Wise, D.J. Anderson, K. Najafi, and K.L. Drake. 1986. Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE Trans. Biomed. Eng. 33:230.CrossRefGoogle Scholar
  7. Borkholder, D.A., J. Bao, N.I. Maluf, E.R. Perl, and G.T. Kovacs. 1997. Microelectrode arrays for stimulation of neural slice preparations. J. Neurosci. Meth. 77(1):61–66.CrossRefGoogle Scholar
  8. Bragin, A., J. Hetke, C.L. Wilson, D.J. Anderson, J. Engel Jr, and G. Buzsaki. 2000. Multiple site silicon based probes for chronic recordings in freely moving rats: implantation, recording, and histological verification. J. Neurosci. Meth. 98(11):77–82.CrossRefGoogle Scholar
  9. Branner, A., R.B. Stein, E. Fernandez, Y. Aoyagi, and R.A. Normann. 2004. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE Trans. Biomed. Eng. 51(1):146–157.CrossRefGoogle Scholar
  10. Burmeister, J.J., and G.A. Gerhardt. 2001. Self-referencing ceramic based multisite microelectrodes for the detection and elimination of interferences from the measurement of l-glutamate and other analytes. Anal. Chem. 73:1037–1042.CrossRefGoogle Scholar
  11. Burmeister, J.J., and G.A. Gerhardt. 2006. Neurochemical arrays. In Encyclopedia of sensors, Vol. 6, Eds. C. Grimes, E. Dickey, and M.V. Pishko. Stevenson Ranch, CA: American Scientific Publishers, 525.Google Scholar
  12. Burmeister, J.J., K. Moxon, and G.A. Gerhardt. 2000. Ceramic-based multisite microelectrodes for electrochemical recordings. Anal. Chem. 72:187–192.CrossRefGoogle Scholar
  13. Burmeister, J.J., F. Pomerleau, M. Palmer, B.K. Day, P. Huettl, and G.A. Gerhardt. 2002. Improved ceramic-based multisite microelectrode for rapid measurements of 1-glutamate in the CNS. J. Neuro. Meth. 119:163–171.CrossRefGoogle Scholar
  14. Chapin J.K., and D.J. Woodward 1986. Distribution of somatic sensory and active-movement neuronal discharge properties in the MI-SI cortical border area in the rat. Exp. Neurol. 91(3):502–523.CrossRefGoogle Scholar
  15. Chapin, J.K., M.A.L. Nicolelis, 2001. Brain Control of Sensorimotor Prostheses. In Neural prostheses for restoration of sensory and motor function. Eds. Chapin, J.K., and K.A. Moxon. Boca Raton, FL: CRC Press, 235–261.Google Scholar
  16. Chapin, J.K. 2004. Using multi-neuron population recordings for neural prosthetics. Nat. Neurosci. 7:452.CrossRefGoogle Scholar
  17. Chen, J., and K.D. Wise. 1997. A silicon probe with integrated microheaters for thermal marking and monitoring of neural tissue. IEEE Trans. Biomed. Eng. 44:770–774.CrossRefGoogle Scholar
  18. Chen, J., K.D. Wise, J.F. Hetke, and S.C. Bledsoe Jr. 1997. A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans. Biomed. Eng. 44:760.CrossRefGoogle Scholar
  19. Cheung, K.C. 2007. Implantable microscale neural interfaces. Biomed. MicrodevicesJan. 25 (epub), PMID: 17252207Google Scholar
  20. Chiganos, T.C., W. Jensen, and P.J. Rousche. 2006. Electrophysiological response dynamics during focal cortical infarction. J. Neural Eng. 3(4):15–22.CrossRefGoogle Scholar
  21. Csicsvari, J., D.A. Henze, B. Jamieson, K.D. Harris, A. Sirota, P. Bartho, K.D. Wise, and G. Buzsaki. 2003. Massively parallel recording of unit and local field potentials with siliconbased electrodes. J. Neurophysiol. 90:1314–1323.CrossRefGoogle Scholar
  22. Della Santina, C.C., G.T. Kovacs, and E.R. Lewis. 1997. Multi-unit recording from regenerated bullfrog eighth nerve using implantable silicon-substrate microelectrodes. J. Neurosci. Meth. 72(1):71–86.CrossRefGoogle Scholar
  23. Drake, K.L., K.D. Wise, J. Farraye, D.J. Anderson, and S.L. BeMent. 1988. Performance of planar multisite microprobes in recording extracellular activity. IEEE Trans. Biomed. Eng. 35:719.CrossRefGoogle Scholar
  24. Ensell, G., D.J. Banks, P.R. Richards, W. Balachandran, and D.J. Ewins. 2000. Silicon-based microelectrodes for neurophysiology, micromachined from silicon-on-insulator wafers. Med. Biol. Eng. Comput. 38(2):175–179.CrossRefGoogle Scholar
  25. Felton E.A., J.A. Wilson, J.C. Williams, P.C. Garell. 2007. Electrocorticographically controlled brain-computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants. Report of four cases. J. Neurosurg. 106(3):495–500.CrossRefGoogle Scholar
  26. Fonseca C., J.P., Silva Cunha R.E. Martins, V.M. Ferreira, J.P. Marques de Sa, M.A. Barbosa, and A. Martins da Silva. 2007. A novel dry active electrode for EEG recording. IEEE Trans. Biomed. Eng. 54(1):162–165.CrossRefGoogle Scholar
  27. Gonzalez, C., and M. Rodriguez. 1997. A flexible perforated microelectrode array probe for nerve and muscle tissues. J. Neurosci. Meth. 72:189–195.CrossRefGoogle Scholar
  28. Heath R.G., S.M. Peacock, Jr., and W. Miller, Jr. 1953. Induced paroxysmal electrical activity in man recorded simultaneously through subcortical and scalp electrodes. Trans. Am. Neurol. Assoc. 3:247–250.Google Scholar
  29. Hetke, J.F., J.L. Lund, K. Najafi, K.D. Wise, and D.J. Anderson. 1994. Silicon ribbon cables for chronically-implantable microelectrode arrays. IEEE Trans. Biomed. Eng. 41:314.CrossRefGoogle Scholar
  30. Hochberg, L.R., Serruya, M.D, Friehs, G.M, Mukand, J.A., Saleh, M, Caplan, A.H., Branner, A., Chen, D., Penn, R.D., and Donoghue, J.P. 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature442:164–171.CrossRefGoogle Scholar
  31. Hoogerwerf, A.C. and K.D. Wise. 1994. A three-dimensional microelectrode array for chronic neural recording. IEEE Trans. Biomed. Eng. 41:1136–1146.CrossRefGoogle Scholar
  32. Jensen, W., K. Yoshida, and U.G. Hofmann. 2006. In vivoimplant mechanics of flexible, silicon based ACREO microelectrode arrays in rat cerebral cortex. IEEE Trans. Biomed. Eng. 53(5): 934–940.CrossRefGoogle Scholar
  33. Kipke, D.R., R.J. Vetter, J.C. Williams, and J.F. Hetke. 2003. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans. Neural Syst. Rehab. Eng. 11(2):151–155.CrossRefGoogle Scholar
  34. Kossoff, E.H., E.K. Ritzl, J.M. Politsky, A.M. Murro, J.R. Smith, R.B. Duckrow, D.D. Spencer, and G.K. Bergey. 2004. Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia45(12):1560–1567.CrossRefGoogle Scholar
  35. Kovacs, G.T., C.W. Storment, and J.M. Rosen, 1992. Regeneration microelectrode array for peripheral nerve recording and stimulation. IEEE Trans. Biomed. Eng. 39:893.CrossRefGoogle Scholar
  36. Kovacs, G.T., C.W. Storment, M. Halks-Miller, C.R. Belczynski Jr, C.C. Della Santina, E.R. Lewis, and N.I. Maluf. 1994. Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves. IEEE Trans. Biomed. Eng. 41:567.CrossRefGoogle Scholar
  37. Leuthardt, E.C., G. Schalk, J.R. Wolpaw, J.G. Ojemann, and D.W. Moran. 2004. A brain computer interface using electrocorticographic signals in humans. J. Neural Eng. 1:63–71.CrossRefGoogle Scholar
  38. Lin, L., G. Chen, K. Xie, K.A. Zaia, S. Zhang, and J.Z. Tsien. 2006. Large-scale neural ensemble recording in the brains of freely-behaving mice. J. Neurosci. Meth. 155(1):28–38.CrossRefGoogle Scholar
  39. Ludvig, N. 2001. Drug deliveries into the microenvironment of electrophysiologically monitored neurons in the brain of behaving rats and monkeys. In Neural prostheses for restoration of sensory and motor function. Eds. Chapin, J.K., and K.A. Moxon. Boca Raton, FL: CRC Press, 263–283.Google Scholar
  40. Marzullo T.C., J.R. Dudley, C.R. Miller, L. Trejo, D.R. Kipke. 2005. Spikes, local field potentials, and electrocorticogram characterization during motor learning in rats for brainmachine interface tasks. Conf Proc IEEE Eng. Med. Biol. Soc. 1:429–431.Google Scholar
  41. Moxon, K.A., S.C. Leiser, G.A. Gerhardt, K.A. Barbee, and J.K. Chapin. 2004. Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE Trans. Biomed. Eng. 51:647.CrossRefGoogle Scholar
  42. Najafi, K., J. Ji, and K.D. Wise. 1990. Scaling limitations of silicon multichannel recording probes. IEEE Trans. Biomed. Eng. 37:1.CrossRefGoogle Scholar
  43. Nicolelis, M.A., D. Dimitrov, J.M. Carmena, R. Crist, G. Lehew, J.D. Kralik, and S.P. Wise. 2003. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. USA, 100(19):11041–11046.CrossRefGoogle Scholar
  44. Nordhausen, C.T., E.M. Maynard, and R.A. Normann. 1996. Single-unit recording capabilities of a 100-microelectrode array. Brain Res. 726:129.CrossRefGoogle Scholar
  45. Olds, J., W.S. Allan, and E. Briese. 1971. Differentiation of hypothalamic drive and reward centers. Am. J. Physiol. 221(1):368–375.Google Scholar
  46. Pan, J.W., J.H. Kim, A.A. Cohen-Gadol, C. Pan, D.D. Spencer, and H.P. Hetherington. 2005. Regional energetic dysfunction in hippocampal epilepsy. Acta Neurol. Scand. 111(4):218–224.CrossRefGoogle Scholar
  47. Pancrazio, J.J., P.P. Bey Jr., A. Loloee, S. Manne, H.C. Chao, L.L. Howard, W.M. Gosney, D.A. Borkholder, G.T. Kovacs, P. Manos, D.S. Cuttino, and D.A. Stenger. 1998. Description and demonstration of a CMOS amplifier-based system with measurement and stimulation capability for bioelectrical signal transduction. Biosens. Bioelectron. 13(9):971–979.CrossRefGoogle Scholar
  48. Patterson, W.R., Y.K. Song, C.W. Bull, I. Ozden, A.P. Deangellis, C. Lay, J.L. McKay, A.V. Nurmikko, J.D. Donoghue, and B.W. Connors. 2004. A microelectrode/microelectronic hybrid device for brain implantable neuroprosthesis applications. IEEE Trans. Biomed. Eng. 51:1845.CrossRefGoogle Scholar
  49. Rathnasingham, R., D.R. Kipke, S.C. Bledsoe Jr, and J.D. McLaren. 2004. Characterization of implantable microfabricated fluid delivery devices. IEEE Trans. Biomed. Eng. 51:138–145.CrossRefGoogle Scholar
  50. Rennaker, R.L., A.M. Ruyle, S.E. Street, and A.M. Sloan. 2005. An economical multichannel cortical electrode array for extended periods of recording during behavior J. Neurosci. Meth. 142(1):97–105.CrossRefGoogle Scholar
  51. Rousche, P.J., D.S. Pellinen, D.P. Pivin Jr, J.C. Williams, R.J. Vetter and D.R. Kipke. 2001. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 48:361–371.CrossRefGoogle Scholar
  52. Ruffini, G., S. Dunne, E. Farres, P.C.P. Watts, E. Mendoza, S.R.P. Silva, C. Grau, J. Marco Pallares, L. Fuentemilla, and B. Vandecasteele. 2006. ENOBIO: First tests of a dry electrophysiology electrode using carbon nanotubes. In Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, Aug 30–Sept 3, 2006. Piscataway, NJ: IEEE Engineering in Medicine and Biology Society (EMBS), 1826–1829.Google Scholar
  53. Schmidt, S., K. Horch, and R. Normann. 1993. Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. J. Biomed. Mater. Res. 27(11):1393–1399.CrossRefGoogle Scholar
  54. Smith, S.L., J.W. Judy, and T.S. Otis. 2004. An ultra small array of electrodes for stimulating multiple inputs into a single neuron. J. Neurosci. M. 133:109–114.CrossRefGoogle Scholar
  55. Song, Y.K., W.R. Patterson, C.W. Bull, J. Beals, N. Hwang, A.P. Deangelis, C. Lay, J.L. McKay, A.V. Nurmikko, M.R. Fellows, J.D. Simeral, J.P. Donoghue, and B.W. Connors. 2005. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications. IEEE Trans. Neural Syst. Rehab. Eng. 13:220.CrossRefGoogle Scholar
  56. Sugiyama, K., W.K. Dong, and E.H. Chudler. 1994. A simplified method for manufacturing glass-insulated metal microelectrodes. J. Neurosci. Meth. 53:73.CrossRefGoogle Scholar
  57. Takahashi, H., T. Ejiri, M. Nakao, N. Nakamura, K. Kaga, and T. Herve. 2003. Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials. IEEE Trans. Biomed. Eng. 50(4):510–516.CrossRefGoogle Scholar
  58. Vetter, R.J., J.C. Williams, J.F. Hetke, E.A. Nunamaker, and D.R. Kipke. 2004. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. IEEE Trans. Biomed. Eng. 51:896.CrossRefGoogle Scholar
  59. Warren, D.J., E. Fernandez, and R.A. Normann. 2001. High-resolution, two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array. Neuroscience105:19.CrossRefGoogle Scholar
  60. Wise K.D., and J.B. Angell. 1975. A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans. Biomed. Eng. 22(3):212–219.CrossRefGoogle Scholar
  61. Wise K.D., J.B. Angell and A. Starr 1970. An integrated-circuit approach to extracellular micro-electrodes. IEEE Trans. Biomed. Eng. 17(3):238–247.CrossRefGoogle Scholar
  62. Williams, J.C., R.L. Rennaker, and D.R. Kipke. 1999. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res. Brain Res. Protoc. 4:303–313.Wise K.D., J.B. Angell and A. Starr 1970. An integrated-circuit approach to extracellular micro-electrodes. IEEE Trans. Biomed. Eng. 17(3):238–247. Williams, J.C., R.L. Rennaker, and D.R. Kipke. 1999. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res. Brain Res. Protoc. 4:303–313.CrossRefGoogle Scholar
  63. Wise K.D., and J.B. Angell. 1975. A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans. Biomed. Eng. 22(3):212–219. Wise K.D., J.B. Angell and A. Starr 1970. An integrated-circuit approach to extracellular micro-electrodes. IEEE Trans. Biomed. Eng. 17(3):238–247. Williams, J.C., R.L. Rennaker, and D.R. Kipke. 1999. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res. Brain Res. Protoc. 4:303–313.CrossRefGoogle Scholar
  64. Wilson, J.A., E.A. Felton, P.C. Garell, G. Schalk, and J.C. Williams. 2006. An ECoG-based brain-computer interface using multimodal control. IEEE Trans. Neural Syst. Rehab. Eng. 14(2):246–250.CrossRefGoogle Scholar
  65. Yoon, T.H., E.J. Hwang, D.Y. Shin, S.I. Park, S.J. Oh, S.C. Jung, H.C. Shin, and S.J. Kim. 2000. A micromachined silicon depth probe for multichannel neural recording. IEEE Trans. Biomed. Eng. 47:1082.CrossRefGoogle Scholar
  66. Yoshida, K., W. Jensen, P. Norlin, M. Kindlundh, and U.G. Hofmann. 2001. Characterization of silicon microelectrodes from the EU VSAMUEL project. Biomediinische Technik446.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Greg A. Gerhardt
    • Patrick A. Tresco

      There are no affiliations available

      Personalised recommendations