Skip to main content

Choice of Radionuclides and Radiolabelling Techniques

  • Chapter
Targeted Radionuclide Tumor Therapy

Summary

Considerations on the choice of type of radionuclide suitable for tumour therapy are given. The physical properties of the radionuclides in relation to the therapy conditions are discussed as well as production and availability. Labelling methods are described in terms of direct versus indirect methods and also in terms of radioactive halogens versus radioactive metals. The influence of labelling method on the binding affinity and cellular processing of the targeting agent is discussed. Emphasis is also given to the influence of the labelling method on cellular radionuclide retention and biodistribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Srivastava S, Dadachova E (2001) Recent advances in radionuclide therapy. Semin Nucl Med 31:330-341

    PubMed  Google Scholar 

  2. Howell RW, Goddu SM, Rao DV (1998) Proliferation and the advantage of longer-lived radionuclides in radioimmunotherapy. Med Phys 25:37-42

    PubMed  Google Scholar 

  3. Howell RW, Rao DV, Sastry KS (1989) Macroscopic dosimetry for radioimmunotherapy: nonuniform activity distributions in solid tumors. Med Phys 16:66-74

    PubMed  Google Scholar 

  4. Wheldon TE, O’Donoghue JA (1990) The radiobiology of targeted radiotherapy. Int J Radiat Biol 58:1-21

    PubMed  Google Scholar 

  5. Wheldon TE, O’Donoghue JA, Barrett A, Michalowski AS (1991) The curability of tumours of differing size by targeted radiotherapy using 131I or 90Y. Radiother Oncol 21:91-99

    PubMed  Google Scholar 

  6. O’Donoghue JA, Bardies M, Wheldon TE (1995) Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med 36:1902-1909

    PubMed  Google Scholar 

  7. Milenic DE, Brady ED, Brechbiel MW (2004) Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov 3:488-499

    PubMed  Google Scholar 

  8. Zweit J (1996) Radionuclides and carrier molecules for therapy. Phys Med Biol 41:1905-1914

    PubMed  Google Scholar 

  9. O’Donoghue JA, Wheldon TE (1996) Targeted radiotherapy using Auger electron emitters. Phys Med Biol 41:1973-1792

    PubMed  Google Scholar 

  10. Adelstein SJ, Kassis AI, Bodei L, Mariani G (2003) Radiotoxicity of iodine-125 and other auger-electron-emitting radionuclides: background to therapy. Cancer Biother Radiopharm 18:301-316

    PubMed  Google Scholar 

  11. Buchegger F, Perillo-Adamer F, Dupertuis YM, Delaloye AB (2006) Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging 33:1352-1363

    PubMed  Google Scholar 

  12. Couturier O, Supiot S, Degraef-Mougin M, Faivre-Chauvet A, Carlier T, Chatal JF, Davodeau F, Cherel M (2005) Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging 32:601-614

    PubMed  Google Scholar 

  13. de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP (2005) Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 46(Suppl 1):13S-17S

    PubMed  Google Scholar 

  14. Volkert WA, Goeckeler WF, Ehrhardt GJ, Ketring AR (1991) Therapeutic radionuclides: production and decay property considerations. J Nucl Med 32:174-185

    PubMed  Google Scholar 

  15. Lebedev NA, Novgorodov AF, Misiak R, Brockmann J, Rösch F (2000) Radiochemical separation of no-carrier-added 177Lu as produced via the 176Yb(n,gamma)177Yb- > 177Lu process. Appl Radiat Isot 53:421-425

    PubMed  Google Scholar 

  16. Knapp FF Jr., Mirzadeh S (1994) The continuing important role of radionuclide generator systems for nuclear medicine. Eur J Nucl Med 21:1151-1165

    PubMed  Google Scholar 

  17. Guhlke S, Beets AL, Oetjen K, Mirzadeh S, Biersack HJ, Knapp FF (2000) Simple new method for effective concentration of 188Re solutions from alumina-based 188W-188Re generator. J Nucl Med 41:1271-1278

    PubMed  Google Scholar 

  18. Tolmachev V, Carlsson J, Lundqvist H (2004) A limiting factor for the progress of radionuclide-based cancer diagnostics and therapy - availability of suitable radionuclides. Acta Oncol 43:264-275

    PubMed  Google Scholar 

  19. Weadock KS, Sharkey RM, Varga DC, Goldenberg DM (1990) Evaluation of a remote radioiodination system for radioimmunotherapy. J Nucl Med 31:508-511

    PubMed  Google Scholar 

  20. Govindan SV, Griffiths GL, Stein R, Andrews P, Sharkey RM, Hansen HJ, Horak ID, Goldenberg DM (2005) Clinical-scale radiolabeling of a humanized anticarcinoembryonic antigen monoclonal antibody, hMN-14, with residualizing 131I for use in radioimmunotherapy. J Nucl Med 46:153-159

    PubMed  Google Scholar 

  21. Goedemans WT, de Jong MTM, Deutz E, Miller KM, Brodack J, Ensing GJ (1991) Development of an In-111 labelled somatostatin analogue: Octreoscan 111. Eur J Nucl Med 18:532

    Google Scholar 

  22. Bakker WH, Breeman WA, van der Pluijm ME, de Jong M, Visser TJ, Krenning EP (1996) Iodine-131 labelled octreotide: not an option for somatostatin receptor therapy. Eur J Nucl Med 23:775-781

    PubMed  Google Scholar 

  23. Chakrabarti MC, Le N, Paik CH, De Graff WG, Carrasquillo JA (1996) Prevention of radiolysis of monoclonal antibody during labeling. J Nucl Med 37:1384-1388

    PubMed  Google Scholar 

  24. DeNardo GL, DeNardo SJ, Wessels BW, Kukis DL, Miyao N, Yuan A (2000) 131I-Lym-1 in mice implanted with human Burkitt’s lymphoma (Raji) tumors: loss of tumor specificity due to radiolysis. Cancer Biother Radiopharm 15:547-560

    PubMed  Google Scholar 

  25. Visser GW, Klok RP, Gebbinck JW, ter Linden T, van Dongen GA, Molthoff CF (2001) Optimal quality 131I-monoclonal antibodies on high-dose labeling in a large reaction volume and temporarily coating the antibody with IODO-GEN. J Nucl Med 42:509-519

    PubMed  Google Scholar 

  26. McDevitt MR, Finn RD, Ma D, Larson SM, Scheinberg DA (1999) Preparation of alphaemitting 213Bi-labeled antibody constructs for clinical use. J Nucl Med 40:1722-1727

    PubMed  Google Scholar 

  27. Liu S, Edwards DS (2001) Stabilization of 90Y-labeled DOTA-biomolecule conjugates using gentisic acid and ascorbic acid. Bioconjug Chem 12:554-558

    PubMed  Google Scholar 

  28. Liu S, Ellars CE, Edwards DS (2003) Ascorbic acid: useful as a buffer agent and radiolytic stabilizer for metalloradiopharmaceuticals. Bioconjug Chem 14:1052-1056

    PubMed  Google Scholar 

  29. Eary JF, Press OW, Badger CC, Durack LD, Richter KY, Addison SJ, Krohn KA, Fisher DR, Porter BA, Williams DL, Martin PL, Appelbaum FR, Levy R, Brown SL, Miller RA, Neip WB, Bernstein ID (1990) Imaging and treatment of B-cell lymphoma. J Nucl Med 31:1257-1268

    PubMed  Google Scholar 

  30. Wahl RL, Wissing J, del Rosario R, Zasadny KR (1990) Inhibition of autoradiolysis of radiolabeled monoclonal antibodies by cryopreservation. J Nucl Med 31:84-89

    PubMed  Google Scholar 

  31. Huang WS, Cherng SC, Jen TK, Yu MH, Yeh MY (2000) Effects of temperature on radiochemical purity and immunoreactivity of radiolabeled monoclonal antibody 1H10. Nucl Med Technol 28:182-185

    Google Scholar 

  32. Visser GW, Gerretsen M, Herscheid JD, Snow GB, van Dongen G (1993) Labeling of monoclonal antibodies with rhenium-186 using the MAG3 chelate for radioimmunotherapy of cancer: a technical protocol. J Nucl Med 34:1953-1963

    PubMed  Google Scholar 

  33. Kishore R, Eary J, Krohn KA, et al. (1986) Autoradiolysis of iodinated monocional antibody preparations. Int J Nucl Med Biol 13:457-459

    Google Scholar 

  34. Salako QA, O’Donnell RT, DeNardo SJ (1998) Effects of radiolysis on yttrium-90-labeled Lym-1 antibody preparations. J Nucl Med 39:667-670

    PubMed  Google Scholar 

  35. Wilbur DS (1992) Radiohalogenation of proteins: an overview of radionuclides, labeling methods, and reagents for conjugate labeling. Bioconjug Chem 3:433-470.

    PubMed  Google Scholar 

  36. Adam MJ, Wilbur DS (2005) Radiohalogens for imaging and therapy. Chem Soc Rev 34:153-163

    PubMed  Google Scholar 

  37. Behr TM, Gotthardt M, Becker W, Béhé M (2002) Radioiodination of monoclonal antibodies, proteins and peptides for diagnosis and therapy. A review of standardized, reliable and safe procedures for clinical grade levels kBq to GBq in the Göttingen/Marburg experience. Nuklearmedizin 41:71-79

    PubMed  Google Scholar 

  38. Vaidyanathan G, Zalutsky MR (2006) Preparation of N-succinimidyl 3-[*I]iodobenzoate: an agent for the indirect radioiodination of proteins. Nat Protoc 1:707-713

    PubMed  Google Scholar 

  39. Liu S, Edwards DS (2001) Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. Bioconjug Chem 12:7-34.

    PubMed  Google Scholar 

  40. Cooper MS, Sabbah E, Mather SJ (2006) Conjugation of chelating agents to proteins and radiolabeling with trivalent metallic isotopes. Nat Protoc 1:314-317

    PubMed  Google Scholar 

  41. Sosabowski JK, Mather SJ (2006) Conjugation of DOTA-like chelating agents to peptides and radiolabeling with trivalent metallic isotopes. Nat Protoc 1:972-976

    PubMed  Google Scholar 

  42. Liu G, Hnatowich DJ (2007) Labeling biomolecules with radiorhenium: a review of the bifunctional chelators. Anticancer Agents Med Chem 7:367-377

    PubMed  Google Scholar 

  43. Novak-Hofer I, Schubiger PA (2002) Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur J Nucl Med Mol Imaging 29:821-830

    PubMed  Google Scholar 

  44. Wadas TJ, Anderson CJ (2006) Radiolabeling of TETA- and CB-TE2A-conjugated peptides with copper-64. Nat Protoc 1:3062-3068

    PubMed  Google Scholar 

  45. Rainsbury R, Westwood J (1982) Tumour localisation with monoclonal antibody radioactivity labelled with metal chelate rather than iodine. Lancet 2:1347-1348

    PubMed  Google Scholar 

  46. Halpern SE, Hagan PL, Garver PR, Koziol JA, Chen AW, Frincke JM, Bartholomew RM, David GS, Adams TH (1983) Stability, characterization, and kinetics of 111In-labeled monoclonal antitumor antibodies in normal animals and nude mouse-human tumor models. Cancer Res 43:5347-5255

    PubMed  Google Scholar 

  47. Pimm MV, Perkins AC, Baldwin RW (1985) Differences in tumour and normal tissue concentrations of iodine- and indium-labelled monoclonal antibody. II. Biodistribution studies in mice with human tumour xenografts. Eur J Nucl Med 11:300-304

    PubMed  Google Scholar 

  48. Hagan PL, Halpern SE, Chen A, Krishnan L, Frincke J, Bartholomew RM, David GS, Carlo D (1985) In vivo kinetics of radiolabeled monoclonal anti-CEA antibodies in animal models. J Nucl Med 26:1418-1423

    PubMed  Google Scholar 

  49. Khaw BA, Cooney J, Edgington T, Strauss HW (1986) Differences in experimental tumor localization of dual-labeled monoclonal antibody. J Nucl Med 27(8):1293-1299

    PubMed  Google Scholar 

  50. Thedrez P, Blottiere H, Chatal JF, Grzyb J, Douillard JY (1986) Comparison between 131I and 111In as radiolabels for monoclonal antibodies in immunoscintigraphy of tumor bearing nude mice. Tumour Biol 7:137-145

    PubMed  Google Scholar 

  51. Sakahara H, Endo K, Nakashima T, Koizumi M, Kunimatsu M, Kawamura Y, Ohta H, Nakamura T, Tanaka H, Kotoura Y (1987) Localization of human osteogenic sarcoma xenografts in nude mice by a monoclonal antibody labeled with radioiodine and indium-111. J Nucl Med 28:342-348

    PubMed  Google Scholar 

  52. Brown BA, Comeau RD, Jones PL, Liberatore FA, Neacy WP, Sands H, Gallagher BM (1987) Pharmacokinetics of the monoclonal antibody B72.3 and its fragments labeled with either 125I or 111In. Cancer Res 47:1149-1154

    PubMed  Google Scholar 

  53. Yokoyama K, Carrasquillo JA, Chang AE, Colcher D, Roselli M, Sugarbaker P, Sindelar W, Reynolds JC, Perentesis P, Gansow OA (1989) Differences in biodistribution of indium111-and iodine-131-labeled B72.3 monoclonal antibodies in patients with colorectal cancer. J Nucl Med 30:320-327

    PubMed  Google Scholar 

  54. Koizumi M, Endo K, Watanabe Y, Saga T, Sakahara H, Konishi J, Yamamuro T, Toyama S (1989) Pharmacokinetics of internally labeled monoclonal antibodies as a gold standard: comparison of biodistribution of 75Se-, 111In-, and 125I-labeled monoclonal antibodies in osteogenic sarcoma xenografts in nude mice. Cancer Res 49:1752-1757

    PubMed  Google Scholar 

  55. Zalutsky MR, Noska MA, Colapinto EV, Garg PK, Bigner DD (1989) Enhanced tumor localization and in vivo stability of a monoclonal antibody radioiodinated using N-succinimidyl 3- (tri-n-butylstannyl)benzoate. Cancer Res 49:5543-5549

    PubMed  Google Scholar 

  56. Zalutsky MR, Garg PK, Narula AS (1990) Labeling monoclonal antibodies with halogen nuclides. Acta Radiol 374(Suppl):141-145

    Google Scholar 

  57. Zalutsky MR, Narula AS (1987) A method for the radiohalogenation of proteins resulting in decreased thyroid uptake of radioiodine. Int J Rad Appl Instrum [A] 38:1051-1055

    Google Scholar 

  58. Zalutsky MR, Narula AS (1988) Radiohalogenation of a monoclonal antibody using an N-succinimidyl 3-(tri-n-butylstannyl)benzoate intermediate. Cancer Res 48:1446-1450

    PubMed  Google Scholar 

  59. Vaidyanathan G, Zalutsky MR (1990) Radioiodination of antibodies via N-succinimidyl 2,4- dimethoxy-3-(trialkylstannyl)benzoates. Bioconjug Chem 1:387-393

    PubMed  Google Scholar 

  60. Vaidyanathan G, Affleck DJ, Zalutsky MR (1993) Radioiodination of proteins using N-succinimidyl 4-hydroxy-3-iodobenzoate. Bioconjug Chem 4:78-84.

    PubMed  Google Scholar 

  61. Vaidyanathan G, Affleck DJ, Zalutsky MR (1997) Method for radioiodination of proteins using N-succinimidyl 3-hydroxy-4-iodobenzoate. Bioconjug Chem 8:724-729

    PubMed  Google Scholar 

  62. Garg PK, Garg S, Zalutsky MR (1993) N-succinimidyl 4-methyl-3-(tri-n-butylstannyl)benzoate: synthesis and potential utility for the radioiodination of monoclonal antibodies. Nucl Med Biol 20:379-387

    PubMed  Google Scholar 

  63. Geissler F, Anderson SK, Venkatesan P, Press O (1992) Intracellular catabolism of radiolabeled anti-mu antibodies by malignant B-cells. Cancer Res 52:2907-2915

    PubMed  Google Scholar 

  64. Kyriakos RJ, Shih LB, Ong GL, Patel K, Goldenberg DM, Mattes MJ (1992) The fate of antibodies bound to the surface of tumor cells in vitro. Cancer Res 52:835-842

    PubMed  Google Scholar 

  65. Mattes MJ, Griffiths GL, Diril H, Goldenberg DM, Ong GL, Shih LB (1994) Processing of antibody-radioisotope conjugates after binding to the surface of tumor cells. Cancer 73:787-793

    PubMed  Google Scholar 

  66. Shih LB, Thorpe SR, Griffiths GL, Diril H, Ong GL, Hansen HJ, Goldenberg DM, Mattes MJ (1994) The processing and fate of antibodies and their radiolabels bound to the surface of tumor cells in vitro: a comparison of nine radiolabels. J Nucl Med 35:899-908

    PubMed  Google Scholar 

  67. Press OW, Shan D, Howell-Clark J, Eary J, Appelbaum FR, Matthews D, King DJ, Haines AM, Hamann P, Hinman L, Shochat D, Bernstein ID (1996) Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 radioimmunoconjugates by cancer cells. Cancer Res 56:2123-2129

    PubMed  Google Scholar 

  68. Tolmachev V, Orlova A, Lundqvist H (2003) Approaches to improvement of cellular retention of radiohalogen labels delivered by internalizing tumor targeting proteins and peptides. Curr Med Chem 10:2447-2460

    PubMed  Google Scholar 

  69. Strobel JL, Baynes JW, Thorpe SR (1985) 125I-glycoconjugate labels for identifying sites of protein catabolism in vivo: effect of structure and chemistry of coupling to protein on label entrapment in cells after protein degradation. Arch Biochem Biophys 240:635-645

    PubMed  Google Scholar 

  70. Pittman RC, Carew TE, Glass CK, Green SR, Taylor CA Jr., Attie AD (1983) A radioiodinated, intracellularly trapped ligand for determining the sites of plasma protein degradation in vivo. Biochem J 212:791-800

    PubMed  Google Scholar 

  71. Ali SA, Eary JF, Warren SD, Badger CC, Krohn KA (1988) Synthesis and radioiodination of tyramine cellobiose for labeling monoclonal antibodies. Int J Rad Appl Instrum B 15:557-561

    PubMed  Google Scholar 

  72. Ali SA, Warren SD, Richter KY, Badger CC, Eary JF, Press OW, Krohn KA, Bernstein ID, Nelp WB (1990) Improving the tumor retention of radioiodinated antibody: aryl carbohydrate adducts. Cancer Res 50(3 Suppl):783s-788s.

    PubMed  Google Scholar 

  73. Reist CJ, Archer GE, Kurpad SN, Wikstrand CJ, Vaidyanathan G, Willingham MC, Moscatello DK, Wong AJ, Bigner DD, Zalutsky MR (1995) Tumor-specific anti-epidermal growth factor receptor variant III monoclonal antibodies: use of the tyramine-cellobiose radioiodination method enhances cellular retention and uptake in tumor xenografts. Cancer Res 55:4375-4382

    PubMed  Google Scholar 

  74. Reist CJ, Archer GE, Wikstrand CJ, Bigner DD, Zalutsky MR (1997) Improved targeting of an anti-epidermal growth factor receptor variant III monoclonal antibody in tumor xenografts after labeling using N-succinimidyl 5-iodo-3-pyridinecarboxylate. Cancer Res 57:1510-1515

    PubMed  Google Scholar 

  75. Zalutsky MR, Xu FJ, Yu Y, Foulon CF, Zhao XG, Slade SK, Affleck DJ, Bast RC Jr. (1999) Radioiodinated antibody targeting of the HER-2/neu oncoprotein: effects of labeling method on cellular processing and tissue distribution. Nucl Med Biol 26:781-790

    PubMed  Google Scholar 

  76. Stein R, Goldenberg DM, Thorpe SR, Basu A, Mattes MJ (1995) Effects of radiolabeling monoclonal antibodies with a residualizing iodine radiolabel on the accretion of radioisotope in tumors. Cancer Res 55:3132-3239

    PubMed  Google Scholar 

  77. Carlsson J, Blomquist E, Gedda L, Liljegren A, Malmstrom PU, Sjostrom A, Sundin A, Westlin JE, Zhao Q, Tolmachev V, Lundqvist H (1999) Conjugate chemistry and cellular processing of EGF-dextran. Acta Oncol 38:313-321

    PubMed  Google Scholar 

  78. Sundberg AL, Blomquist E, Carlsson J, Steffen AC, Gedda L (2003) Cellular retention of radioactivity and increased radiation dose. Model experiments with EGF-dextran. Nucl Med Biol 30:303-315

    PubMed  Google Scholar 

  79. Stein R, Goldenberg DM, Thorpe SR, Mattes M J (1997) Advantage of a residualizing iodine radiolabel for radioimmunotherapy of xenografts of human nonsmall-cell carcinoma of the lung. J Nucl Med 38:391-395

    PubMed  Google Scholar 

  80. Garg S, Garg PK, Zalutsky MR (1991) N-succinimidyl 5-(trialkylstannyl)-3-pyridine-carboxylates: a new class of reagents for protein radioiodination. Bioconjug Chem 2:50-56

    PubMed  Google Scholar 

  81. Garg S, Garg PK, Zhao XG, Friedman HS, Bigner DD, Zalutsky MR (1993) Radioiodination of a monoclonal antibody using N-succinimidyl 5-iodo-3-pyridinecarboxylate. Nucl Med Biol 20:835-842

    PubMed  Google Scholar 

  82. Reist CJ, Batra SK, Pegram CN, Bigner DD, Zalutsky MR (1997) In vitro and in vivo behavior of radiolabeled chimeric anti-EGFRvIII monoclonal antibody: comparison with its murine parent. Nucl Med Biol 24:639-647

    PubMed  Google Scholar 

  83. Kuan CT, Reist CJ, Foulon CF, Lorimer IA, Archer G, Pegram CN, Pastan I, Zalutsky MR, Bigner DD (1999) 125I-labeled anti-epidermal growth factor receptor-vIII single-chain Fv exhibits specific and high-level targeting of glioma xenografts. Clin Cancer Res 5:1539-1549

    PubMed  Google Scholar 

  84. Vaidyanathan G, Affleck DJ, Li J, Welsh P, Zalutsky MR (2001) A polar substituentcontaining acylation agent for the radioiodination of internalizing monoclonal antibodies: N-succinimidyl 4-guanidinomethyl-3-[131I]iodobenzoate ([131I]SGMIB). Bioconjug Chem 12:428-438

    PubMed  Google Scholar 

  85. Vaidyanathan G, Affleck DJ, Bigner DD, Zalutsky MR (2002) Improved xenograft targeting of tumor-specific anti-epidermal growth factor receptor variant III antibody labeled using N-succinimidyl 4-guanidinomethyl-3-iodobenzoate. Nucl Med Biol 29:1-11

    PubMed  Google Scholar 

  86. Vaidyanathan G, Affleck DJ, Bigner DD, Zalutsky M (2003) N-succinimidyl 3-[211At]astato4-guanidinomethylbenzoate: an acylation agent for labeling internalizing antibodies with alpha-particle emitting 211At. Nucl Med Biol 30:351-359

    PubMed  Google Scholar 

  87. Foulon CF, Reist CJ, Bigner DD, Zalutsky MR (2000) Radioiodination via D-amino acid peptide enhances cellular retention and tumor xenograft targeting of an internalizing antiepidermal growth factor receptor variant III monoclonal antibody. Cancer Res 60: 4453-4460

    PubMed  Google Scholar 

  88. Foulon CF, Welsh PC, Bigner DD, Zalutsky MR (2001) Positively charged templates for labeling internalizing antibodies: comparison of N-succinimidyl 5-iodo-3-pyridinecarboxylate and the D-amino acid peptide KRYRR. Nucl Med Biol 28:769-777

    PubMed  Google Scholar 

  89. Tolmachev V, Koziorowski J, Sivaev I, Lundqvist H, Carlsson J, Orlova A, Gedda L, Olsson P, Sjöberg S, Sundin A (1999) Closo-dodecarborate (2-) as a Linker for Iodination of Macromolecules. Aspects on Conjugation Chemistry and Biodistribution. Bioconjug Chem 10: 338-345

    PubMed  Google Scholar 

  90. Wilbur DS, Hamlin DK, Srivastava RR, Chyan MK (2004) Synthesis, radioiodination, and biodistribution of some nido- and closo-monocarbon carborane derivatives. Nucl Med Biol 31:523-530

    PubMed  Google Scholar 

  91. Orlova A, Bruskin A, Sivaev I, Sjöberg S, Lundqvist H, Tolmachev V (2006) Radioiodination of monoclonal antibody using isothiocyanato derivative of closo-dodecaborate ([125I]IodoDABI). Anticancer Res 26:1217-1224

    PubMed  Google Scholar 

  92. Steffen AC, Almqvist Y, Ming-Kuan Chyan, Lundqvist H, Tolmachev V, Wilbur DS, Carlsson J (2007) Biodistribution and dose calculations for 211At labeled HER-2 binding affibody molecules. Oncology Rep 17:1141-1147

    Google Scholar 

  93. Shankar S, Vaidyanathan G, Affleck D, Welsh PC, Zalutsky MR (2003) N-succinimidyl 3-[131I]iodo-4-phosphonomethylbenzoate ([131I]SIPMB), a negatively charged substituent-bearing acylation agent for the radioiodination of peptides and mAbs. Bioconjug Chem 14:331-341

    PubMed  Google Scholar 

  94. Vaidyanathan G, Alston KL, Bigner DD, Zalutsky MR (2006) Nepsilon-(3-[*I]Iodobenzoyl)Lys5-Nalpha-maleimido-Gly1-GEEEK ([*I]IB-Mal-D-GEEEK): a radioiodinated prosthetic group containing negatively charged D-glutamates for labeling internalizing monoclonal antibodies. Bioconjug Chem 17:1085-1092

    PubMed  Google Scholar 

  95. Govindan SV, Mattes MJ, Stein R, McBride BJ, Karacay H, Goldenberg DM, Hansen HJ, Griffiths GL (1999) Labeling of monoclonal antibodies with diethylenetriaminepentaacetic acid-appended radioiodinated peptides containing D-amino acids. Bioconjug Chem 10:231-240

    PubMed  Google Scholar 

  96. Stein R, Govindan SV, Mattes MJ, Chen S, Reed L, Newsome G, McBride BJ, Griffiths GL, Hansen HJ, Goldenberg DM (2003) Improved iodine radiolabels for monoclonal antibody therapy. Cancer Res 63:111-118

    PubMed  Google Scholar 

  97. Orlova A, Bruskin A, Sjostrom A, Lundqvist H, Gedda L, Tolmachev V (2000) Cellular processing of 125I- and 111In-labeled epidermal growth factor (EGF) bound to cultured A431 tumor cells. Nucl Med Biol 27:827-835

    PubMed  Google Scholar 

  98. Sundberg AL, Orlova A, Bruskin A, Gedda L, Carlsson J, Blomquist E, Lundqvist H, Tolmachev V (2003) [111In]Bz-DTPA-hEGF: preparation and in vitro characterization of a potential anti-glioblastoma targeting agent. Cancer Biother Radiopharm 18:643-654

    PubMed  Google Scholar 

  99. Chen J, Cheng Z, Hoffman TJ, Jurisson SS, Quinn TP (2000) Melanoma-targeting properties of 99 mtechnetium-labeled cyclic alpha-melanocyte-stimulating hormone peptide analogues. Cancer Res 60:5649-5658

    PubMed  Google Scholar 

  100. Lantry LE, Cappelletti E, Maddalena ME, Fox JS, Feng W, Chen J, Thomas R, Eaton SM, Bogdan NJ, Arunachalam T, Reubi JC, Raju N, Metcalfe EC, Lattuada L, Linder KE, Swenson RE, Tweedle MF, Nunn AD (2006) 177Lu-AMBA: synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 47:1144-1152

    PubMed  Google Scholar 

  101. Behr TM, Goldenberg DM, Becker W (1998) Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med 25:201-212

    PubMed  Google Scholar 

  102. Melis M, Krenning EP, Bernard BF, Barone R, Visser TJ, de Jong M (2005) Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. Eur J Nucl Med Mol Imaging 32:1136-1143

    PubMed  Google Scholar 

  103. de Jong M, Barone R, Krenning E, Bernard B, Melis M, Visser T, Gekle M, Willnow TE, Walrand S, Jamar F, Pauwels S (2005) Megalin is essential for renal proximal tubule reabsorption of 111In-DTPA-octreotide. J Nucl Med 46:1696-1700

    PubMed  Google Scholar 

  104. Gotthardt M, van Eerd-Vismale J, Oyen WJ, de Jong M, Zhang H, Rolleman E, Maecke HR, Behe M, Boerman O (2007) Indication for different mechanisms of kidney uptake of radiolabeled peptides. J Nucl Med 48:596-601

    PubMed  Google Scholar 

  105. Sharkey RM, Motta-Hennessy C, Pawlyk D, Siegel JA, Goldenberg DM (1990) Biodistribution and radiation dose estimates for yttrium- and iodine-labeled monoclonal antibody IgG and fragments in nude mice bearing human colonic tumor xenografts. Cancer Res 50:2330-2336

    PubMed  Google Scholar 

  106. Schott ME, Milenic DE, Yokota T, Whitlow M, Wood JF, Fordyce WA, Cheng RC, Schlom J (1992) Differential metabolic patterns of iodinated versus radiometal chelated anticarcinoma single-chain Fv molecules. Cancer Res 52:6413-6417

    PubMed  Google Scholar 

  107. Kenanova V, Olafsen T, Williams LE, Ruel NH, Longmate J, Yazaki PJ, Shively JE, Colcher D, Raubitschek AA, Wu AM (2007) Radioiodinated versus radiometal-labeled anti-carcino-embryonic antigen single-chain Fv-Fc antibody fragments: optimal pharmacokinetics for therapy. Cancer Res 67:718-726

    PubMed  Google Scholar 

  108. Kobayashi H, Kao CH, Kreitman RJ, Le N, Kim MK, Brechbiel MW, Paik CH, Pastan I, Carrasquillo JA (2000) Pharmacokinetics of 111In- and 125I-labeled antiTac single-chain Fv recombinant immunotoxin. J Nucl Med 41:755-762

    PubMed  Google Scholar 

  109. Behr TM, Sharkey RM, Sgouros G, Blumenthal RD, Dunn RM, Kolbert K, Griffiths GL, Siegel JA, Becker WS, Goldenberg DM (1997) Overcoming the nephrotoxicity of radiometal-labeled immunoconjugates: improved cancer therapy administered to a nude mouse model in relation to the internal radiation dosimetry. Cancer 80(12 Suppl):2591-2610

    PubMed  Google Scholar 

  110. Bernard BF, Krenning EP, Breeman WA, Rolleman EJ, Bakker WH, Visser TJ, Macke H, de Jong M (1997) D-lysine reduction of indium-111 octreotide and yttrium-90 octreotide renal uptake. J Nucl Med 38:1929-1933

    PubMed  Google Scholar 

  111. Rolleman EJ, Valkema R, de Jong M, Kooij PP, Krenning EP (2003) Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging 30:9-15

    PubMed  Google Scholar 

  112. van Eerd JE, Vegt E, Wetzels JF, Russel FG, Masereeuw R, Corstens FH, Oyen WJ, Boerman OC (2006) Gelatin-based plasma expander effectively reduces renal uptake of 111In-octreotide in mice and rats. J Nucl Med 47:528-533

    PubMed  Google Scholar 

  113. Vegt E, Wetzels JF, Russel FG, Masereeuw R, Boerman OC, van Eerd JE, Corstens FH, Oyen WJ (2006) Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin. J Nucl Med 47:432-436

    PubMed  Google Scholar 

  114. Behe M, Kluge G, Becker W, Gotthardt M, Behr TM (2005) Use of polyglutamic acids to reduce uptake of radiometal-labeled minigastrin in the kidneys. J Nucl Med 46:1012-1015

    PubMed  Google Scholar 

  115. Arano Y (1998) Strategies to reduce renal radioactivity levels of antibody fragments. Q J Nucl Med 42:262-270

    PubMed  Google Scholar 

  116. Arano Y, Fujioka Y, Akizawa H, Ono M, Uehara T, Wakisaka K, Nakayama M, Sakahara H, Konishi J, Saji H (1999) Chemical design of radiolabeled antibody fragments for low renal radioactivity levels. Cancer Res 59:128-134

    PubMed  Google Scholar 

  117. Fujioka Y, Arano Y, Ono M, Uehara T, Ogawa K, Namba S, Saga T, Nakamoto Y, Mukai T, Konishi J, Saji H (2001) Renal metabolism of 3 -iodohippuryl N(epsilon)-maleoyl-L-lysine (HML)-conjugated Fab fragments. Bioconjug Chem 12:178-185

    PubMed  Google Scholar 

  118. Uehara T, Koike M, Nakata H, Hanaoka H, Iida Y, Hashimoto K, Akizawa H, Endo K, Arano Y (2007) Design, synthesis, and evaluation of [188Re]organorhenium-labeled antibody fragments with renal enzyme-cleavable linkage for low renal radioactivity levels. Bioconjug Chem 18:190-198

    PubMed  Google Scholar 

  119. Li L, Olafsen T, Anderson AL, Wu A, Raubitschek AA, Shively JE (2002) Reduction of kidney uptake in radiometal labeled peptide linkers conjugated to recombinant antibody fragments. Site-specific conjugation of DOTA-peptides to a cys-diabody. Bioconjug Chem 13:985-995

    PubMed  Google Scholar 

  120. Griffiths GL, Goldenberg DM, Jones AL, Hansen HJ (1992) Radiolabeling of monoclonal antibodies and fragments with technetium and rhenium. Bioconjug Chem 3:91-99

    PubMed  Google Scholar 

  121. Iznaga-Escobar N (2001) Direct radiolabeling of monoclonal antibodies with rhenium-188 for radioimmunotherapy of solid tumors-a review of radiolabeling characteristics, quality control and in vitro stability studies. Appl Radiat Isot 54:399-406

    PubMed  Google Scholar 

  122. Griffiths GL, Goldenberg DM, Knapp FF, Callahan AP, Chang CH, Hansen HJ (1991) Direct radiolabeling of monoclonal antibodies with generator-produced rhenium-188 for radioimmunotherapy: labeling and animal biodistribution studies. Cancer Res 51:4594-4602

    PubMed  Google Scholar 

  123. Winnard P, Virzi E, Fogarasi M, Rusckowski M, Hnatowich DJ (1996) Investigations of directly labeling antibodies with rhenium-188. Q J Nucl Med 40:151-160

    PubMed  Google Scholar 

  124. Rhodes BA, Lambert CR, Marek MJ, Knapp FF, Harvey EB (1996) Re-188 labelled antibodies. Appl Radiat Isot 47:7-14

    PubMed  Google Scholar 

  125. John E, Thakur ML, DeFulvio J, McDevitt MR, Damjanov I (1993) Rhenium-186-labeled monoclonal antibodies for radioimmunotherapy: preparation and evaluation. J Nucl Med 34:260-267

    PubMed  Google Scholar 

  126. Olafsen T, Bruland OS, Zalutsky MR, Sandlie I (1996) Abundant tyrosine residues in the antigen binding site in anti-osteosarcoma monoclonal antibodies TP-1 and TP-3: Application to radiolabeling. Acta Oncol 35:297-301

    PubMed  Google Scholar 

  127. Nikula TK, Bocchia M, Curcio MJ, Sgouros G, Ma Y, Finn RD, Scheinberg DA (1995) Impact of the high tyrosine fraction in complementarity determining regions: measured and predicted effects of radioiodination on IgG immunoreactivity. Mol Immunol 32:865-872

    PubMed  Google Scholar 

  128. Smellie WJ, Dean CJ, Sacks NP, Zalutsky MR, Garg PK, Carnochan P, Eccles SA (1995) Radioimmunotherapy of breast cancer xenografts with monoclonal antibody ICR12 against c-erbB2 p185: comparison of iodogen and N-succinimidyl 4-methyl-3-(tri-n- butylstannyl)benzoate radioiodination methods. Cancer Res 55(23 Suppl):5842s-5846s

    PubMed  Google Scholar 

  129. Olafsen T, Bruland OS, Zalutsky MR, Sandlie I (1995) Cloning and sequencing of V genes from anti-osteosarcoma monoclonal antibodies TP-1 and TP-3: location of lysine residues and implications for radiolabeling. Nucl Med Biol 22:765-771

    PubMed  Google Scholar 

  130. Nestor M, Persson M, Cheng J, Tolmachev V, van Dongen G, Anniko M, Kairemo K (2003) Biodistribution of the chimeric monoclonal antibody U36 radioiodinated with a closododecaborate-containing linker. Comparison with other radioiodination methods. Bioconjug Chem 14:805-810

    PubMed  Google Scholar 

  131. Kennel SJ, Mirzadeh S, Hurst GB, Foote LJ, Lankford TK, Glowienka KA, Chappell LL, Kelso JR, Davern SM, Safavy A, Brechbiel MW (2000) Labeling and distribution of linear peptides identified using in vivo phage display selection for tumors. Nucl Med Biol 27:815-825

    PubMed  Google Scholar 

  132. Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, Maecke H (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34(7):982-993

    PubMed  Google Scholar 

  133. Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A; Abrahmsén L (2007) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7:555-568

    PubMed  Google Scholar 

  134. Orlova A., Magnusson M, Eriksson T, Nilsson M, Larsson B, Höiden-Guthenberg I, Widström C, Carlsson J, Tolmachev V, Ståhl S, Nilsson F (2006) Tumor imaging using a picomolar affinity HER2 binding Affibody molecule. Cancer Res 66:4339-4348

    PubMed  Google Scholar 

  135. Tolmachev V, Nilsson FY, Widström C, Andersson K, Gedda L, Wennborg A, Orlova A (2006) 111In-benzyl-DTPA-ZHER2:342, an Affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors. J Nucl Med 47:846-853

    PubMed  Google Scholar 

  136. Engfeldt T, Orlova A, Tran T, Bruskin A, Widström C, Eriksson Karlström A, Tolmachev V (2007) Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the 99 mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. Eur J Nucl Med Molec Imaging 34:722-733

    Google Scholar 

  137. Engfeldt T, Tran T, Orlova A, Widström C, Feldwisch J, Abrahmsen L, Wennborg A, Karlström AE, Tolmachev V (2007) 99 mTc-chelator engineering to improve tumour targeting properties of a HER2-specific Affibody molecule. Eur J Nucl Med Molec Imaging 34 (11):1843-1853

    Google Scholar 

  138. Tran T, Engfeldt T, Orlova A, Widström Ch, Bruskin A, Tolmachev V, Eriksson Karlström A (2007) Comparative in vivo evaluation of peptide-based chelators for attachment of 99 mTc to HER2-targeting affibody ZHER2:342. Biocojug Chem 18:549-558

    Google Scholar 

  139. Carlsson J, Ren ZP, Wester K, Sundberg ÅL, Heldin NE, Hesselager G, Persson M, Gedda L, Tolmachev V, Lundqvist H, Blomquist E, Nistér M (2006) Planning for intracavitary anti-EGFR radionuclide therapy of gliomas. Literature review and data on EGFR expression. J Neuro-Onc 77:33-45

    Google Scholar 

  140. Sundberg AL, Gedda L, Orlova A, Bruskin A, Blomquist E, Carlsson J, Tolmachev V (2004) [177Lu]Bz-DTPA-EGF: preclinical characterization of a potential radionuclide targeting agent against glioma. Cancer Biother Radiopharm 19:195-204

    PubMed  Google Scholar 

  141. Velikyan I, Sundberg AL, Lindhe O, Hoglund AU, Eriksson O, Werner E, Carlsson J, Bergstrom M, Langstrom B, Tolmachev V (2005) Preparation and evaluation of 68Ga-DOTAhEGF for visualization of EGFR expression in malignant tumors. J Nucl Med 46:1881-1888

    PubMed  Google Scholar 

  142. Babaei MH, Almqvist Y, Orlova A, Shafii M, Kairemo K, Tolmachev V (2005) [99 mTc] HYNIC-hEGF, a potential agent for imaging of EGF receptors in vivo: preparation and preclinical evaluation. Oncol Rep 13:1169-1175

    PubMed  Google Scholar 

  143. van Gog FB, Visser GW, Stroomer JW, Roos JC, Snow GB, van Dongen GA (1997) High dose rhenium-186-labeling of monoclonal antibodies for clinical application: pitfalls and solutions. Cancer 80(12 Suppl):2360-2370

    PubMed  Google Scholar 

  144. Orlova A, Höglund J, Lubberink M, Lebeda O, Gedda L, Lundqvist H, Tolmachev V, Sundin A (2002) Comparative biodistribution of the radiohalogenated (Br, I and At) antibody A33. Implications for in vivo dosimetry. Cancer Biother Radiopharm 17:385-396

    PubMed  Google Scholar 

  145. Koppe MJ, Bleichrodt RP, Soede AC, Verhofstad AA, Goldenberg DM, Oyen WJ, Boerman OC (2004) Biodistribution and therapeutic efficacy of 125/131I-, 186Re-, 88/90Y-, or 177Lu-labeled monoclonal antibody MN-14 to carcinoembryonic antigen in mice with small peritoneal metastases of colorectal origin. J Nucl Med 45:1224-1232

    PubMed  Google Scholar 

  146. Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, van Dongen GA (2005) 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 46:1898-1906

    PubMed  Google Scholar 

  147. Perk LR, Visser OJ, Stigter-van Walsum M, Vosjan MJ, Visser GW, Zijlstra JM, Huijgens PC, van Dongen GA (2006) Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 33:1337-1345

    PubMed  Google Scholar 

  148. Bakker WH, Krenning EP, Reubi JC, Breeman WA, Setyono-Han B, de Jong M, Kooij PP, Bruns C, van Hagen PM, Marbach P (1991) In vivo application of [111In-DTPA-D-Phe1]octreotide for detection of somatostatin receptor-positive tumors in rats. Life Sci 49:1593-1601

    PubMed  Google Scholar 

  149. de Jong M, Bakker WH, Breeman WA, van der Pluijm ME, Kooij PP, Visser TJ, Docter R, Krenning EP (1993) Hepatobiliary handling of iodine-125-Tyr3-octreotide and indium111-DTPA-D-Phe1-octreotide by isolated perfused rat liver. J Nucl Med 34:2025-2030

    PubMed  Google Scholar 

  150. Verbeke K, Snauwaert K, Cleynhens B, Scheer W, Verbruggen A (2000) Influence of the bifuncational chelate on the biological behavior of 99 mTc-labeled chemotactic peptide conjugates. Nucl Med Biol 27:769-779

    PubMed  Google Scholar 

  151. Zhu Z, Wang Y, Zhang Y, Liu G, Liu N, Rusckowski M, Hnatowich DJ (2001) A novel and simplified route to the synthesis of N3S chelators for 99 mTc labeling. Nucl Med Biol 28:703-708

    PubMed  Google Scholar 

  152. Decristoforo C, Mather SJ (1999) Preparation, 99 mTc-labeling, and in vitro characterization of HYNIC and N3S modified RC-160 and [Tyr3]octreotide. Bioconjug Chem 10:431-438

    PubMed  Google Scholar 

  153. Orlova A, Tran T, Widström Ch., Engfeldt T, Eriksson Karlström A, Tolmachev V (2007) Pre-clinical evaluation of [111In]-benzyl-DOTA-Z(HER2:342), a potential agent for imaging of HER2 expression in malignant tumors. Int J Mol Med 20(3):397-404

    PubMed  Google Scholar 

  154. Dijkgraaf I, Liu S, Kruijtzer JA, Soede AC, Oyen WJ, Liskamp RM, Corstens FH, Boerman OC (2007) Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide. Nucl Med Biol 34:29-35

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Tolmachev, V. (2008). Choice of Radionuclides and Radiolabelling Techniques. In: Stigbrand, T., Carlsson, J., Adams, G.P. (eds) Targeted Radionuclide Tumor Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8696-0_8

Download citation

Publish with us

Policies and ethics