Skip to main content

Peptides for Radionuclide Therapy

  • Chapter
Book cover Targeted Radionuclide Tumor Therapy

Summary

Somatostatin receptor-targeting peptides are widely being used for imaging and therapy of neuroendocrine tumors. Peptide receptor radionuclide therapy (PRRT) with e.g. 177Lu labeled somatostatin analogues in neuroendocrine tumor patients has resulted in symptomatic improvement, prolonged survival and enhanced quality of life. Yet, much profit can be gained from improving the receptor-targeting strategies available and developing new strategies, e.g. targeting other tumor-specific receptors, such as gastrin-releasing peptide (GRP) receptors and gastrin/cholecystokinin (CCK) receptors, and combining PRRT with other treatment strategies like chemotherapy or co-treatment with radiosensitizers.

This chapter presents an overview of several options to optimize receptor-targeted imaging and also radionuclide therapy. It outlines the efforts currently underway to develop optimized radiopharmaceuticals, increase the target density and combine treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krenning, E. P., Teunissen, J. J., Valkema, R., et al.: Molecular radiotherapy with somatostatin analogs for (neuro-)endocrine tumors. J Endocrinol Invest 28, 146-150 (2005)

    PubMed  CAS  Google Scholar 

  2. Krenning, E. P., Kwekkeboom, D. J., Bakker, W. H., et al.: Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 20, 716-731 (1993)

    PubMed  CAS  Google Scholar 

  3. Kwekkeboom, D., Krenning, E. P. and de Jong, M.: Peptide receptor imaging and therapy. J Nucl Med 41, 1704-1713 (2000)

    PubMed  CAS  Google Scholar 

  4. Valkema, R., De Jong, M., Bakker, W. H., et al.: Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med 32, 110-122 (2002)

    PubMed  Google Scholar 

  5. Bodei, L., Cremonesi, M., Zoboli, S., et al.: Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study. Eur J Nucl Med Mol Imaging 30, 207-216 (2003)

    PubMed  CAS  Google Scholar 

  6. Valkema, R., Pauwels, S., Kvols, L. K., et al.: Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0,Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 36, 147-156 (2006)

    PubMed  Google Scholar 

  7. Otte, A., Herrmann, R., Heppeler, A., et al.: Yttrium-90 DOTATOC: first clinical results. Eur J Nucl Med 26, 1439-1447 (1999)

    PubMed  CAS  Google Scholar 

  8. Waldherr, C., Pless, M., Maecke, H. R., et al.: Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med 43, 610-616 (2002)

    PubMed  CAS  Google Scholar 

  9. Chinol, M., Bodei, L., Cremonesi, M., et al.: Receptor-mediated radiotherapy with Y-DOTADPhe-Tyr-octreotide: the experience of the European Institute of Oncology Group. Semin Nucl Med 32, 141-147 (2002)

    PubMed  Google Scholar 

  10. van Essen, M., krenning, E. P., de Jong, M., et al.: Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours Acta Oncology, 46(6):723-34 (2007)

    Google Scholar 

  11. Valkema, R., Pauwels, S. A., Kvols, L. K., et al.: Long-term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0),Tyr(3)-octreotide and (177)Lu- DOTA(0), Tyr(3)-octreotate. J Nucl Med 46 (Suppl 1), 83S-91S (2005)

    PubMed  CAS  Google Scholar 

  12. Reubi, J. C., Schar, J. C., Waser, B., et al.: Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27, 273-282 (2000)

    PubMed  CAS  Google Scholar 

  13. de Jong, M., Breeman, W. A., Bakker, W. H., et al.: Comparison of (111)In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Cancer Res 58, 437-441 (1998)

    PubMed  Google Scholar 

  14. Esser, J. P., Krenning, E. P., Teunissen, J. J., et al.: Comparison of [(177)Lu-DOTA(0),Tyr(3)] octreotate and [(177)Lu-DOTA(0),Tyr(3)]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging 33, 1346-1351 (2006)

    PubMed  CAS  Google Scholar 

  15. Kwekkeboom, D. J., Bakker, W. H., Kooij, P. P., et al.: [177Lu-DOTAOTyr3]octreotate: comparison with [111In-DTPAo]octreotide in patients. Eur J Nucl Med 28, 1319-1325 (2001)

    PubMed  CAS  Google Scholar 

  16. O’Donoghue, J. A., Bardies, M. and Wheldon, T. E.: Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med 36, 1902-1909 (1995)

    PubMed  Google Scholar 

  17. de Jong, M., Breeman, W. A., Valkema, R., et al.: Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 46 (Suppl 1), 13S-17S (2005)

    PubMed  Google Scholar 

  18. Kwekkeboom, D. J., Teunissen, J. J., Bakker, W. H., et al.: Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol 23, 2754-2762 (2005)

    PubMed  CAS  Google Scholar 

  19. Teunissen, J. J., Kwekkeboom, D. J. and Krenning, E. P.: Quality of life in patients with gastroenteropancreatic tumors treated with [177Lu-DOTA0,Tyr3]octreotate. J Clin Oncol 22, 2724-2729 (2004)

    PubMed  CAS  Google Scholar 

  20. Zhang, H., Chen, J., Waldherr, C., et al.: Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res 64, 6707-6715 (2004)

    PubMed  CAS  Google Scholar 

  21. Breeman, W. A., Hofland, L. J., de Jong, M., et al.: Evaluation of radiolabelled bombesin analogues for receptor-targeted scintigraphy and radiotherapy. Int J Cancer 81, 658-665 (1999)

    PubMed  CAS  Google Scholar 

  22. Ginj, M., Zhang, H., Waser, B., et al.: Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci USA 103, 16436-16441 (2006)

    PubMed  CAS  Google Scholar 

  23. Cescato, R., Maina, T., Nock, B., et al.: Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 49, 318-326 (2008)

    PubMed  CAS  Google Scholar 

  24. Gabriel, M., Decristoforo, C., Donnemiller, E., et al.: An intrapatient comparison of 99 mTcEDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptorexpressing tumors. J Nucl Med 44, 708-716 (2003)

    PubMed  CAS  Google Scholar 

  25. Bangard, M., Behe, M., Guhlke, S., et al.: Detection of somatostatin receptor-positive tumours using the new 99 mTc-tricine-HYNIC-D-Phe1-Tyr3-octreotide: first results in patients and comparison with 111In-DTPA-D-Phe1-octreotide. Eur J Nucl Med 27, 628-637 (2000)

    PubMed  CAS  Google Scholar 

  26. Hubalewska-Dydejczyk, A., Fross-Baron, K., Golkowski, F., et al.: 99 mTc-EDDA/HYNICoctreotate in detection of atypical bronchial carcinoid. Exp Clin Endocrinol Diabetes 115, 47-49 (2007)

    PubMed  CAS  Google Scholar 

  27. Hubalewska-Dydejczyk, A., Fross-Baron, K., Mikolajczak, R., et al.: 99 mTc-EDDA/HYNICoctreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years’ experience. Eur J Nucl Med Mol Imaging 33, 1123-1133 (2006)

    PubMed  CAS  Google Scholar 

  28. Hubalewska-Dydejczyk, A., Szybinski, P., Fross-Baron, K., et al.: (99 m)Tc-EDDA/HYNICoctreotate - a new radiotracer for detection and staging of NET: a case of metastatic duodenal carcinoid. Nucl Med Rev Cent East Eur 8, 155-156 (2005)

    PubMed  Google Scholar 

  29. Gabriel, M., Decristoforo, C., Maina, T., et al.: 99 mTc-N4-[Tyr3]Octreotate versus 99 mTcEDDA/HYNIC-[Tyr3]Octreotide: an intrapatient comparison of two novel Technetium-99 m labeled tracers for somatostatin receptor scintigraphy. Cancer Biother Radiopharm 19, 73-79 (2004)

    PubMed  CAS  Google Scholar 

  30. Nikolopoulou, A., Maina, T., Sotiriou, P., et al.: Tetraamine-modified octreotide and octreotate: labeling with 99 mTc and preclinical comparison in AR4-2J cells and AR4-2J tumorbearing mice. J Pept Sci 12, 124-131 (2006)

    PubMed  CAS  Google Scholar 

  31. Decristoforo, C., Maina, T., Nock, B., et al.: 99 mTc-Demotate 1: first data in tumour patientsresults of a pilot/phase I study. Eur J Nucl Med Mol Imaging 30, 1211-1219 (2003)

    PubMed  CAS  Google Scholar 

  32. Breeman, W. A., de Jong, M., de Blois, E., et al.: Radiolabelling DOTA-peptides with 68 Ga. Eur J Nucl Med Mol Imaging 32, 478-485 (2005)

    PubMed  CAS  Google Scholar 

  33. Antunes, P., Ginj, M., Zhang, H., et al.: Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34, 982-993 (2007)

    PubMed  CAS  Google Scholar 

  34. Kowalski, J., Henze, M., Schuhmacher, J., et al.: Evaluation of positron emission tomography imaging using [68 Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 5, 42-48 (2003)

    PubMed  Google Scholar 

  35. Gabriel, M., Decristoforo, C., Kendler, D., et al: 68 Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48, 508-518 (2007)

    PubMed  CAS  Google Scholar 

  36. Kulaksiz, H., Eissele, R., Rossler, D., et al.: Identification of somatostatin receptor subtypes 1, 2A, 3, and 5 in neuroendocrine tumours with subtype specific antibodies. Gut 50, 52-60 (2002)

    PubMed  CAS  Google Scholar 

  37. Reubi, J. C., Waser, B., Schaer, J. C., et al: Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 28, 836-846 (2001)

    PubMed  CAS  Google Scholar 

  38. Ginj, M., Schmitt, J. S., Chen, J., et al.: Design, synthesis, and biological evaluation of somatostatin-based radiopeptides. Chem Biol 13, 1081-1090 (2006)

    PubMed  CAS  Google Scholar 

  39. Wild, D., Macke, H. R., Waser, B., et al: 68 Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5. Eur J Nucl Med Mol Imaging 32, 724 (2005)

    PubMed  Google Scholar 

  40. Pettinato, C., Sarnelli, A., Di Donna, M., et al.: (68)Ga-DOTANOC: biodistribution and dosimetry in patients affected by neuroendocrine tumors. Eur J Nucl Med Mol Imaging 35, 72-79 (2008)

    PubMed  CAS  Google Scholar 

  41. Wehrmann, C., Senftleben, S., Zachert, C., et al.: Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother Radiopharm 22, 406-416 (2007)

    PubMed  CAS  Google Scholar 

  42. Reubi, J. C., Wenger, S., Schmuckli-Maurer, J., et al.: Bombesin receptor subtypes in human cancers: detection with the universal radioligand (125)I-[D-TYR(6), beta-ALA(11), PHE(13), NLE(14)] bombesin(6-14). Clin Cancer Res 8, 1139-1146 (2002)

    PubMed  CAS  Google Scholar 

  43. Jemal, A., Siegel, R., Ward, E., et al.: Cancer statistics, 2007. CA Cancer J Clin 57, 43-66 (2007)

    PubMed  Google Scholar 

  44. Breeman, W. A., de Jong, M., Bernard, B., et al.: Tissue distribution and metabolism of radioiodinated DTPA0, D-Tyr1 and Tyr3 derivatives of octreotide in rats. Anticancer Res 18, 83-89 (1998)

    PubMed  CAS  Google Scholar 

  45. Nock, B., Nikolopoulou, A., Chiotellis, E., et al.: [(99 m)Tc]Demobesin 1, a novel potent bombesin analogue for GRP receptor-targeted tumour imaging. Eur J Nucl Med Mol Imaging 30, 247-258 (2003)

    PubMed  CAS  Google Scholar 

  46. Nock, B. A., Nikolopoulou, A., Galanis, A., et al.: Potent bombesin-like peptides for GRPreceptor targeting of tumors with 99 mTc: a preclinical study. J Med Chem 48, 100-110 (2005)

    PubMed  CAS  Google Scholar 

  47. Van de Wiele, C., Dumont, F., Vanden Broecke, R., et al.: Technetium-99 m RP527, a GRP analogue for visualisation of GRP receptor- expressing malignancies: a feasibility study. Eur J Nucl Med 27, 1694-1699 (2000)

    PubMed  Google Scholar 

  48. van Bokhoven, A., Varella-Garcia, M., Korch, C., et al.: Molecular characterization of human prostate carcinoma cell lines. Prostate 57, 205-225 (2003)

    PubMed  Google Scholar 

  49. Hoffman, T. J., Gali, H., Smith, C. J., et al.: Novel series of 111In-labeled bombesin analogs as potential radiopharmaceuticals for specific targeting of gastrin-releasing peptide receptors expressed on human prostate cancer cells. J Nucl Med 44, 823-831. (2003)

    PubMed  CAS  Google Scholar 

  50. Breeman, W. A., de Jong, M., Erion, J. L., et al.: Preclinical comparison of (111)In-labeled DTPA- or DOTA-bombesin analogs for receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 43, 1650-1656 (2002)

    PubMed  CAS  Google Scholar 

  51. Ferro-Flores, G., Arteaga de Murphy, C., Rodriguez-Cortes, J., et al.: Preparation and evaluation of 99 mTc-EDDA/HYNIC-[Lys 3]-bombesin for imaging gastrin-releasing peptide receptor-positive tumours. Nucl Med Commun 27, 371-376 (2006)

    PubMed  CAS  Google Scholar 

  52. Garcia Garayoa, E., Ruegg, D., Blauenstein, P., et al.: Chemical and biological characterization of new Re(CO)(3)/[(99 m)Tc](CO)(3) bombesin analogues. Nucl Med Biol 34, 17-28 (2007)

    PubMed  CAS  Google Scholar 

  53. Reubi, J. C., Macke, H. R. and Krenning, E. P.: Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 46 (Suppl 1), 67S-75S (2005)

    PubMed  CAS  Google Scholar 

  54. de Visser, M., Bernard, H. F., Erion, J. L., et al: Novel (111)In-labelled bombesin analogues for molecular imaging of prostate tumours. Eur J Nucl Med Mol Imaging (2007)

    Google Scholar 

  55. Zhang, H., Schuhmacher, J., Waser, B., et al.: DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptorpositive tumours. Eur J Nucl Med 34, 1198-1208 (2007)

    Google Scholar 

  56. Yang, Y. S., Zhang, X., Xiong, Z., et al.: Comparative in vitro and in vivo evaluation of two 64Cu-labeled bombesin analogs in a mouse model of human prostate adenocarcinoma. Nucl Med Biol 33, 371-380 (2006)

    PubMed  CAS  Google Scholar 

  57. Smith, C. J., Gali, H., Sieckman, G. L., et al.: Radiochemical investigations of (177)LuDOTA-8-Aoc-BBN[7-14]NH(2): an in vitro/in vivo assessment of the targeting ability of this new radiopharmaceutical for PC-3 human prostate cancer cells. Nucl Med Biol 30, 101-109 (2003)

    PubMed  CAS  Google Scholar 

  58. Rogers, B. E., Bigott, H. M., McCarthy, D. W., et al.: MicroPET imaging of a gastrin-releasing peptide receptor-positive tumor in a mouse model of human prostate cancer using a 64Culabeled bombesin analogue. Bioconjug Chem 14, 756-763 (2003)

    PubMed  CAS  Google Scholar 

  59. Johnson, C. V., Shelton, T., Smith, C. J., et al.: Evaluation of combined (177)Lu-DOTA-8-AOC-BBN (7-14)NH(2) GRP receptor-targeted radiotherapy and chemotherapy in PC-3 human prostate tumor cell xenografted SCID mice. Cancer Biother Radiopharm 21, 155-166 (2006)

    PubMed  CAS  Google Scholar 

  60. Biddlecombe, G. B., Rogers, B. E., Visser, M. D., et al.: Molecular imaging of gastrin-releasing peptide receptor-positive tumors in mice using (64)Cu- and (86)Y-DOTA-(Pro(1),Tyr(4) )Bombesin(1-14). Bioconjug Chem 18, 724-730 (2007)

    PubMed  CAS  Google Scholar 

  61. Lantry, L. E., Cappelletti, E., Maddalena, M. E., et al.: 177Lu-AMBA: Synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 47, 1144-1152 (2006)

    PubMed  CAS  Google Scholar 

  62. Van de Wiele, C., Dumont, F., van Belle, S., et al.: Is there a role for agonist gastrin-releasing peptide receptor radioligands in tumour imaging? Nucl Med Commun 22, 5-15 (2001)

    PubMed  Google Scholar 

  63. Baum, R., Prasad, V., Mutloka, N., et al.: Molecular imaging of bombesin receptors in various tumors by Ga-68 AMBA PET/CT: first results. J Nucl Med 48, 79P (2007)

    Google Scholar 

  64. de Visser, M., van Weerden, W. M., Melis, M., et al.: Radiolabeled bombesin analogs in preclinical studies. J Nucl Med 48 (Suppl 2), 24P (2007)

    Google Scholar 

  65. Mancuso, A., Oudard, S. and Sternberg, C. N.: Effective chemotherapy for hormone-refractory prostate cancer (HRPC): present status and perspectives with taxane-based treatments. Crit Rev Oncol Hematol 61, 176-185 (2007)

    PubMed  Google Scholar 

  66. Oudard, S., Banu, E., Beuzeboc, P., et al.: Multicenter randomized phase II study of two schedules of docetaxel, estramustine, and prednisone versus mitoxantrone plus prednisone in patients with metastatic hormone-refractory prostate cancer. J Clin Oncol 23, 3343-3351 (2005)

    PubMed  CAS  Google Scholar 

  67. de Visser, M., van Weerden, W. M., de Ridder, C. M., et al.: Androgen-dependent expression of the gastrin-releasing peptide receptor in human prostate tumor xenografts. J Nucl Med 48, 88-93 (2007)

    PubMed  Google Scholar 

  68. Reubi, J. C., Waser, B., Friess, H., et al.: Neurotensin receptors: a new marker for human ductal pancreatic adenocarcinoma. Gut 42, 546-550 (1998)

    PubMed  CAS  Google Scholar 

  69. Kuhar, M. J.: Imaging receptors for drugs in neural tissue. Neuropharmacology 26, 911-916 (1987)

    PubMed  CAS  Google Scholar 

  70. Ehlers, R. A., Kim, S., Zhang, Y., et al.: Gut peptide receptor expression in human pancreatic cancers. Ann Surg 231, 838-848 (2000)

    PubMed  CAS  Google Scholar 

  71. Zhang, K., An, R., Gao, Z., et al.: Radionuclide imaging of small-cell lung cancer (SCLC) using 99 mTc-labeled neurotensin peptide 8-13. Nucl Med Biol 33, 505-512 (2006)

    PubMed  CAS  Google Scholar 

  72. Nock, B. A., Nikolopoulou, A., Reubi, J. C., et al.: Toward stable N4-modified neurotensins for NTS1-receptor-targeted tumor imaging with 99 mTc. J Med Chem 49, 4767-4776 (2006)

    PubMed  CAS  Google Scholar 

  73. Maes, V., Garcia-Garayoa, E., Blauenstein, P., et al.: Novel 99 mTc-labeled neurotensin analogues with optimized biodistribution properties. J Med Chem 49, 1833-1836 (2006)

    PubMed  CAS  Google Scholar 

  74. Garcia-Garayoa, E., Maes, V., Blauenstein, P., et al.: Double-stabilized neurotensin analogues as potential radiopharmaceuticals for NTR-positive tumors. Nucl Med Biol 33, 495-503 (2006)

    PubMed  CAS  Google Scholar 

  75. Garcia-Garayoa, E., Allemann-Tannahill, L., Blauenstein, P., et al.: In vitro and in vivo evaluation of new radiolabeled neurotensin(8-13) analogues with high affinity for NT1 receptors. Nucl Med Biol 28, 75-84 (2001)

    PubMed  CAS  Google Scholar 

  76. Lugrin, D., Vecchini, F., Doulut, S., et al.: Reduced peptide bond pseudopeptide analogues of neurotensin: binding and biological activities, and in vitro metabolic stability. Eur J Pharmacol 205, 191-198 (1991)

    PubMed  CAS  Google Scholar 

  77. de Visser, M., Janssen, P. J., Srinivasan, A., et al.: Stabilised 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues for imaging and therapy of exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging 30, 1134-1139 (2003)

    PubMed  Google Scholar 

  78. Emami, B., Lyman, J., Brown, A., et al.: Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21, 109-122 (1991)

    PubMed  CAS  Google Scholar 

  79. Buchegger, F., Bonvin, F., Kosinski, M., et al.: Radiolabeled neurotensin analog, 99 mTc-NTXI, evaluated in ductal pancreatic adenocarcinoma patients. J Nucl Med 44, 1649-1654 (2003)

    PubMed  CAS  Google Scholar 

  80. Reubi, J. C., Chayvialle, J. A., Franc, B., et al.: Somatostatin receptors and somatostatin content in medullary thyroid carcinomas. Lab Invest 64, 567-573 (1991)

    PubMed  CAS  Google Scholar 

  81. Kwekkeboom, D. J., Reubi, J. C., Lamberts, S. W., et al.: In vivo somatostatin receptor imaging in medullary thyroid carcinoma. J Clin Endocrinol Metab 76, 1413-1417 (1993)

    PubMed  CAS  Google Scholar 

  82. Reubi, J. C., Schaer, J. C. and Waser, B.: Cholecystokinin(CCK)-A and CCK-B/gastrin receptors in human tumors. Cancer Res 57, 1377-1386 (1997)

    PubMed  CAS  Google Scholar 

  83. Behr, T. M., Jenner, N., Radetzky, S., et al.: Targeting of cholecystokinin-B/gastrin receptors in vivo: preclinical and initial clinical evaluation of the diagnostic and therapeutic potential of radiolabelled gastrin. Eur J Nucl Med 25, 424-430 (1998)

    PubMed  CAS  Google Scholar 

  84. Reubi, J. C., Waser, B., Schaer, J. C., et al.: Unsulfated DTPA- and DOTA-CCK analogs as specific high-affinity ligands for CCK-B receptor-expressing human and rat tissues in vitro and in vivo. Eur J Nucl Med 25, 481-490 (1998)

    PubMed  CAS  Google Scholar 

  85. de Jong, M., Bakker, W. H., Bernard, B. F., et al.: Preclinical and initial clinical evaluation of 111In-labeled nonsulfated CCK8 analog: a peptide for CCK-B receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 40, 2081-2087 (1999)

    PubMed  Google Scholar 

  86. Kwekkeboom, D. J., Bakker, W. H., Kooij, P. P., et al.: Cholecystokinin receptor imaging using an octapeptide DTPA-CCK analogue in patients with medullary thyroid carcinoma. Eur J Nucl Med 27, 1312-1317 (2000)

    PubMed  CAS  Google Scholar 

  87. Mather, S. J., McKenzie, A. J., Sosabowski, J. K., et al.: Selection of radiolabeled gastrin analogs for peptide receptor-targeted radionuclide therapy. J Nucl Med 48, 615-622 (2007)

    PubMed  CAS  Google Scholar 

  88. Behr, T. M., Jenner, N., Behe, M., et al.: Radiolabeled peptides for targeting cholecystokininB/gastrin receptor-expressing tumors. J Nucl Med 40, 1029-1044 (1999)

    PubMed  CAS  Google Scholar 

  89. Nock, B. A., Maina, T., Behe, M., et al.: CCK-2/gastrin receptor-targeted tumor imaging with (99 m)Tc-labeled minigastrin analogs. J Nucl Med 46, 1727-1736 (2005)

    PubMed  CAS  Google Scholar 

  90. Gotthardt, M., Behe, M. P., Beuter, D., et al.: Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 33, 1273-1279 (2006)

    PubMed  Google Scholar 

  91. Gotthardt, M., Behe, M. P., Grass, J., et al.: Added value of gastrin receptor scintigraphy in comparison to somatostatin receptor scintigraphy in patients with carcinoids and other neuroendocrine tumours. Endocr Relat Cancer 13, 1203-1211 (2006)

    PubMed  Google Scholar 

  92. Mayo, K. E., Miller, L. J., Bataille, D., et al.: International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 55, 167-194 (2003)

    CAS  Google Scholar 

  93. Reubi, J. C. and Waser, B.: Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 30, 781-793 (2003)

    PubMed  CAS  Google Scholar 

  94. Korner, M., Stockli, M., Waser, B., et al.: GLP-1 Receptor Expression in Human Tumors and Human Normal Tissues: Potential for In Vivo Targeting. J Nucl Med 48, 736-743 (2007)

    PubMed  CAS  Google Scholar 

  95. Meier, J. J. and Nauck, M. A.: Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes Metab Res Rev 21, 91-117 (2005)

    PubMed  CAS  Google Scholar 

  96. Hassan, M., Eskilsson, A., Nilsson, C., et al.: In vivo dynamic distribution of 131I-glucagonlike peptide-1 (7-36) amide in the rat studied by gamma camera. Nucl Med Biol 26, 413-420 (1999)

    PubMed  CAS  Google Scholar 

  97. Gotthardt, M., Fischer, M., Naeher, I., et al.: Use of the incretin hormone glucagon-like peptide-1 (GLP-1) for the detection of insulinomas: initial experimental results. Eur J Nucl Med Mol Imaging 29, 597-606 (2002)

    PubMed  CAS  Google Scholar 

  98. Gotthardt, M., Lalyko, G., van Eerd-Vismale, J., et al.: A new technique for in vivo imaging of specific GLP-1 binding sites: First results in small rodents. Regul Pept 137, 162-167 (2006)

    PubMed  CAS  Google Scholar 

  99. Wild, D., Behe, M., Wicki, A., et al.: [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. J Nucl Med 47, 2025-2033 (2006)

    PubMed  CAS  Google Scholar 

  100. Wicki, A., Wild, D., Storch, D., et al.: [Lys40(Ahx-DTPA-111In)NH2]-Exendin-4 is a highly efficient radiotherapeutic for glucagon-like peptide-1 receptor-targeted therapy for insulinoma. Clin Cancer Res 13, 3696-3705 (2007)

    PubMed  CAS  Google Scholar 

  101. Brooks, P. C.: Role of integrins in angiogenesis. Eur J Cancer 32A, 2423-2429 (1996)

    PubMed  CAS  Google Scholar 

  102. Plow, E. F., Haas, T. A., Zhang, L., et al.: Ligand binding to integrins. J Biol Chem 275, 21785-21788 (2000)

    PubMed  CAS  Google Scholar 

  103. Gurrath, M., Muller, G., Kessler, H., et al.: Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides. Eur J Biochem 210, 911-921 (1992)

    PubMed  CAS  Google Scholar 

  104. Aumailley, M., Gurrath, M., Muller, G., et al.: Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett 291, 50-54 (1991)

    PubMed  CAS  Google Scholar 

  105. van Hagen, P. M., Breeman, W. A., Bernard, H. F., et al.: Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. Int J Cancer 90, 186-198 (2000)

    PubMed  Google Scholar 

  106. Chen, X., Park, R., Tohme, M., et al.: MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 15, 41-49 (2004)

    PubMed  Google Scholar 

  107. Cai, W., Zhang, X., Wu, Y., et al.: A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobe nzamido)ethyl]maleimide, and synthesis of RGD peptide-based tracer for PET imaging of alpha v beta 3 integrin expression. J Nucl Med 47, 1172-1180 (2006)

    PubMed  CAS  Google Scholar 

  108. Haubner, R., Kuhnast, B., Mang, C., et al.: [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 15, 61-69 (2004)

    PubMed  CAS  Google Scholar 

  109. Beer, A. J., Haubner, R., Sarbia, M., et al.: Positron emission tomography using [18F]GalactoRGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 12, 3942-3949 (2006)

    PubMed  CAS  Google Scholar 

  110. Beer, A. J., Haubner, R., Wolf, I., et al.: PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging alpha v beta3 expression. J Nucl Med 47, 763-769 (2006)

    PubMed  CAS  Google Scholar 

  111. Beer, A. J., Haubner, R., Goebel, M., et al.: Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 46, 1333-1341 (2005)

    PubMed  CAS  Google Scholar 

  112. Dijkgraaf, I., Kruijtzer, J. A., Liu, S., et al.: Improved targeting of the alpha(v)beta (3) integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging 34, 267-273 (2007)

    PubMed  CAS  Google Scholar 

  113. Dijkgraaf, I., Rijnders, A. Y., Soede, A., et al.: Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. Org Biomol Chem 5, 935-944 (2007)

    PubMed  CAS  Google Scholar 

  114. Dijkgraaf, I., Liu, S., Kruijtzer, J. A., et al.: Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide. Nucl Med Biol 34, 29-35 (2007)

    PubMed  CAS  Google Scholar 

  115. Dijkgraaf, I., Kruijtzer, J. A., Frielink, C., et al.: Alpha v beta 3 integrin-targeting of intra- peritoneally growing tumors with a radiolabeled RGD peptide. Int J Cancer 120, 605-610 (2007)

    PubMed  CAS  Google Scholar 

  116. Kimura, N., Hayafuji, C., Konagaya, H., et al.: 17 beta-estradiol induces somatostatin (SRIF) inhibition of prolactin release and regulates SRIF receptors in rat anterior pituitary cells. Endocrinology 119, 1028-1036 (1986)

    PubMed  CAS  Google Scholar 

  117. Presky, D. H. and Schonbrunn, A.: Somatostatin pretreatment increases the number of somatostatin receptors in GH4C1 pituitary cells and does not reduce cellular responsiveness to somatostatin. J Biol Chem 263, 714-721 (1988)

    PubMed  CAS  Google Scholar 

  118. Kimura, N., Hayafuji, C. and Kimura, N.: Characterization of 17-beta-estradiol-dependent and -independent somatostatin receptor subtypes in rat anterior pituitary. J Biol Chem 264, 7033-7040 (1989)

    PubMed  CAS  Google Scholar 

  119. Slama, A., Videau, C., Kordon, C., et al.: Estradiol regulation of somatostatin receptors in the arcuate nucleus of the female rat. Neuroendocrinology 56, 240-245 (1992)

    PubMed  CAS  Google Scholar 

  120. Vidal, C., Rauly, I., Zeggari, M., et al.: Up-regulation of somatostatin receptors by epidermal growth factor and gastrin in pancreatic cancer cells. Mol Pharmacol 46, 97-104 (1994)

    PubMed  CAS  Google Scholar 

  121. Visser-Wisselaar, H. A., Van Uffelen, C. J., Van Koetsveld, P. M., et al.: 17-beta-estradioldependent regulation of somatostatin receptor subtype expression in the 7315b prolactin secreting rat pituitary tumor in vitro and in vivo. Endocrinology 138, 1180-1189 (1997)

    PubMed  CAS  Google Scholar 

  122. Froidevaux, S., Hintermann, E., Torok, M., et al.: Differential regulation of somatostatin receptor type 2 (sst 2) expression in AR4-2J tumor cells implanted into mice during octreotide treatment. Cancer Res 59, 3652-3657 (1999)

    PubMed  CAS  Google Scholar 

  123. Viguerie, N., Esteve, J. P., Susini, C., et al.: Dexamethasone effects on somatostatin receptors in pancreatic acinar AR4-2J cells. Biochem Biophys Res Commun 147, 942-948 (1987)

    PubMed  CAS  Google Scholar 

  124. Gunn, S. H., Schwimer, J. E., Cox, M., et al.: In vitro modeling of the clinical interactions between octreotide and 111In-pentetreotide: is there evidence of somatostatin receptor downregulation? J Nucl Med 47, 354-359 (2006)

    PubMed  CAS  Google Scholar 

  125. Behe, M., Püsken, M., Henzel, M., et al.: Upregulation of gastrin and somatostatin receptor after irradiation. Eur J Nucl Med Mol Imaging 30, S218 (2003)

    Google Scholar 

  126. Behe, M., Koller, S., Püsken, M., et al.: Irradiation-induced upregulation of somatostatin and gastrin receptors in vitro and in vivo. Eur J Nucl Med Mol Imaging 31, S237-S238 (2004)

    Google Scholar 

  127. Oddstig, J., Bernhardt, P., Nilsson, O., et al.: Radiation-induced up-regulation of somatosta- tin receptor expression in small cell lung cancer in vitro. Nucl Med Biol 33, 841-846 (2006)

    PubMed  CAS  Google Scholar 

  128. Capello, A., Krenning, E., Bernard, B., et al.: 111In-labelled somatostatin analogues in a rat tumour model: somatostatin receptor status and effects of peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 32, 1288-1295 (2005)

    PubMed  CAS  Google Scholar 

  129. Melis, M., Forrer, F., Capello, A., et al.: Up-regulation of somatostatin receptor density on rat CA20948 tumours escaped from low dose [177Lu-DOTA0,Tyr3]octreotate therapy. Q J Nucl Med Mol Imaging 51, 324-33 (2007)

    PubMed  CAS  Google Scholar 

  130. Seth, P.: Vector-mediated cancer gene therapy: an overview. Cancer Biol Ther 4, 512-517 (2005)

    Article  PubMed  CAS  Google Scholar 

  131. Buchsbaum, D. J., Zinn, K. R. and Rogers, B. E.: Gene expression imaging with 111In- and 99 mTc-labeled peptides of somatostatin receptors upregulated by adenovirus infection. Society of Nuclear Medicine, 47th Annual meeting, 246-251 (2000)

    Google Scholar 

  132. Zinn, K. R., Chaudhuri, T. R., Buchsbaum, D. J., et al.: Simultaneous evaluation of dual gene transfer to adherent cells by gamma-ray imaging. Nucl Med Biol 28, 135-144 (2001)

    PubMed  CAS  Google Scholar 

  133. Hemminki, A., Belousova, N., Zinn, K. R., et al.: An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression. Mol Ther 4, 223-231 (2001)

    PubMed  CAS  Google Scholar 

  134. Zinn, K. R., Chaudhuri, T. R., Krasnykh, V. N., et al.: Gamma camera dual imaging with a somatostatin receptor and thymidine kinase after gene transfer with a bicistronic adenovirus in mice. Radiology 223, 417-425 (2002)

    PubMed  CAS  Google Scholar 

  135. Verwijnen, S. M., ter Horst, M., Sillevis Smith, P. A. E., et al: Molecular imaging following adenoviral gene transfer visualizes sst2 and HSV1-tk expression (submitted) (2007)

    Google Scholar 

  136. Rogers, B. E., Zinn, K. R., Lin, C. Y., et al.: Targeted radiotherapy with [(90)Y]-SMT 487 in mice bearing human nonsmall cell lung tumor xenografts induced to express human somatostatin receptor subtype 2 with an adenoviral vector. Cancer 94, 1298-1305 (2002)

    PubMed  CAS  Google Scholar 

  137. Rogers, B. E., Parry, J. J., Andrews, R., et al.: MicroPET imaging of gene transfer with a somatostatin receptor-based reporter gene and (94 m)Tc-Demotate 1. J Nucl Med 46, 1889-1897 (2005)

    PubMed  CAS  Google Scholar 

  138. Gotthardt, M., Librizzi, D., Wolf, D., et al.: Increased therapeutic efficacy through combination of Lu-177-DOTATOC and chemotheray in neuroendocrine tumours in vivo. Eur J Nucl Med Mol Imaging 33, S115 (2006)

    Google Scholar 

  139. Kong, G., Lau, E., Ramdave, S., et al: High-dose In-111 octreotide therapy in combination with radiosensitizing 5-FU chemotherapy for treatment of SSR-expressing neuroendocrine tumors. J Nucl Med 46, 151P-152P (2005)

    Google Scholar 

  140. Wild, D., Wicki, A. and Christofori, G.: Combination therapy with [(lys40(Ahx-[111InDTPA])]-Exendin-4 and VEGF-receptor tyrosine kinase inhibitor PTK in a glucagon-like-peptide-1 receptor-positive transgenic mouse tumor model. J Nucl Med 48 (Suppl 2), 83P (2007)

    Google Scholar 

  141. Fueger, B. J., Hamilton, G., Raderer, M., et al.: Effects of chemotherapeutic agents on expression of somatostatin receptors in pancreatic tumor cells. J Nucl Med 42, 1856-1862 (2001)

    PubMed  CAS  Google Scholar 

  142. de Jong, M., Breeman, W. A., Bernard, B. F., et al.: [177Lu-DOTA(0),Tyr3] octreotate for somatostatin receptor-targeted radionuclide therapy. Int J Cancer 92, 628-633 (2001)

    PubMed  Google Scholar 

  143. de Jong, M., Breeman, W. A., Bernard, B. F., et al.: Tumor response after [(90)Y-DOTA(0),T yr(3)]octreotide radionuclide therapy in a transplantable rat tumor model is dependent on tumor size. J Nucl Med 42, 1841-1846 (2001)

    PubMed  Google Scholar 

  144. Schally, A. V. and Nagy, A.: Cancer chemotherapy based on targeting of cytotoxic peptide conjugates to their receptors on tumors. Eur J Endocrinol 141, 1-14 (1999)

    PubMed  CAS  Google Scholar 

  145. Nagy, A. and Schally, A. V.: Targeting cytotoxic conjugates of somatostatin, luteinizing hormone-releasing hormone and bombesin to cancers expressing their receptors: a “smarter” chemotherapy. Curr Pharm Des 11, 1167-1180 (2005)

    PubMed  CAS  Google Scholar 

  146. Hofland, L. J., Capello, A., Krenning, E. P., et al.: Induction of apoptosis with hybrids of Arg-Gly-Asp molecules and peptides and antimitotic effects of hybrids of cytostatic drugs and peptides. J Nucl Med 46 (Suppl 1), 191S-198S (2005)

    PubMed  CAS  Google Scholar 

  147. Keller, G., Schally, A. V., Nagy, A., et al.: Effective therapy of experimental human malignant melanomas with a targeted cytotoxic somatostatin analogue without induction of multidrug resistance proteins. Int J Oncol 28, 1507-1513 (2006)

    PubMed  CAS  Google Scholar 

  148. Engel, J. B., Schally, A. V., Halmos, G., et al.: Targeted therapy with a cytotoxic somatostatin analog, AN-238, inhibits growth of human experimental endometrial carcinomas expressing multidrug resistance protein MDR-1. Cancer 104, 1312-1321 (2005)

    PubMed  CAS  Google Scholar 

  149. Buchholz, S., Keller, G., Schally, A. V., et al.: Therapy of ovarian cancers with targeted cytotoxic analogs of bombesin, somatostatin, and luteinizing hormone-releasing hormone and their combinations. Proc Natl Acad Sci USA 103, 10403-10407 (2006)

    PubMed  CAS  Google Scholar 

  150. Kanashiro, C. A., Schally, A. V., Nagy, A., et al.: Inhibition of experimental U-118MG glioblastoma by targeted cytotoxic analogs of bombesin and somatostatin is associated with a suppression of angiogenic and antiapoptotic mechanisms. Int J Oncol 27, 169-174 (2005)

    PubMed  CAS  Google Scholar 

  151. Kiaris, H., Schally, A. V., Nagy, A., et al.: Regression of U-87 MG human glioblastomas in nude mice after treatment with a cytotoxic somatostatin analog AN-238. Clin Cancer Res 6, 709-717 (2000)

    PubMed  CAS  Google Scholar 

  152. Szereday, Z., Schally, A. V., Nagy, A., et al.: Effective treatment of experimental U-87MG human glioblastoma in nude mice with a targeted cytotoxic bombesin analogue, AN-215. Br J Cancer 86, 1322-1327 (2002)

    PubMed  CAS  Google Scholar 

  153. Moody, T. W., Fuselier, J., Coy, D. H., et al.: Camptothecin-somatostatin conjugates inhibit the growth of small cell lung cancer cells. Peptides 26, 1560-1566 (2005)

    PubMed  CAS  Google Scholar 

  154. Sun, L. C., Luo, J., Mackey, L. V., et al.: A conjugate of camptothecin and a somatostatin analog against prostate cancer cell invasion via a possible signaling pathway involving PI3K/ Akt, alphaVbeta3/alphaVbeta5 and MMP-2/-9. Cancer Lett 246, 157-166 (2007)

    PubMed  CAS  Google Scholar 

  155. Moody, T. W., Sun, L. C., Mantey, S. A., et al.: In vitro and in vivo antitumor effects of cytotoxic camptothecin-bombesin conjugates are mediated by specific interaction with cellular bombesin receptors. J Pharmacol Exp Ther 318, 1265-1272 (2006)

    PubMed  CAS  Google Scholar 

  156. Sun, L. C., Luo, J., Mackey, V. L., et al.: Effects of camptothecin on tumor cell proliferation and angiogenesis when coupled to a bombesin analog used as a targeted delivery vector. Anticancer Drugs 18, 341-348 (2007)

    PubMed  CAS  Google Scholar 

  157. Bernard, B., Capello, A., van Hagen, M., et al.: Radiolabeled RGD-DTPA-Tyr3-octreotate for receptor-targeted radionuclide therapy. Cancer Biother Radiopharm 19, 173-180 (2004)

    PubMed  CAS  Google Scholar 

  158. Capello, A., Krenning, E. P., Bernard, B. F., et al.: Increased cell death after therapy with an Arg-Gly-Asp-linked somatostatin analog. J Nucl Med 45, 1716-1720 (2004)

    PubMed  CAS  Google Scholar 

  159. Capello, A., Krenning, E. P., Bernard, B. F., et al.: Anticancer activity of targeted proapoptotic peptides. J Nucl Med 47, 122-129 (2006)

    PubMed  CAS  Google Scholar 

  160. Buckley, C. D., Pilling, D., Henriquez, N. V., et al.: RGD peptides induce apoptosis by direct caspase-3 activation. Nature 397, 534-539 (1999)

    PubMed  CAS  Google Scholar 

  161. Lambert, B., Cybulla, M., Weiner, S. M., et al.: Renal toxicity after radionuclide therapy. Radiat Res 161, 607-611 (2004)

    PubMed  CAS  Google Scholar 

  162. Kwekkeboom, D. J., Mueller-Brand, J., Paganelli, G., et al: Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 46 (Suppl 1), 62S-66S (2005)

    PubMed  CAS  Google Scholar 

  163. Melis, M., Krenning, E. P., Bernard, B. F., et al.: Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. Eur J Nucl Med Mol Imaging 32, 1136-1143 (2005)

    PubMed  CAS  Google Scholar 

  164. De Jong, M., Valkema, R., Van Gameren, A., et al.: Inhomogeneous Localization of Radioactivity in the Human Kidney After Injection of [(111)In-DTPA]Octreotide. J Nucl Med 45, 1168-1171 (2004)

    PubMed  Google Scholar 

  165. de Jong, M., Barone, R., Krenning, E., et al.: Megalin is essential for renal proximal tubule reabsorption of (111)In-DTPA-octreotide. J Nucl Med 46, 1696-1700 (2005)

    PubMed  Google Scholar 

  166. Rolleman, E. J., Kooij, P. P., de Herder, W. W., et al.: Somatostatin receptor subtype 2- mediated uptake of radiolabelled somatostatin analogues in the human kidney. Eur J Nucl Med 34, 1854-1860 (2007)

    CAS  Google Scholar 

  167. Rolleman, E. J., Valkema, R., de Jong, M., et al.: Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging 30, 9-15 (2003)

    PubMed  CAS  Google Scholar 

  168. Verwijnen, S. M., Krenning, E. P., Valkema, R., et al.: Oral versus intravenous administration of lysine: equal effectiveness in reduction of renal uptake of [111In-DTPA]octreotide. J Nucl Med 46, 2057-2060 (2005)

    PubMed  CAS  Google Scholar 

  169. van Eerd, J. E., Vegt, E., Wetzels, J. F., et al.: Gelatin-based plasma expander effectively reduces renal uptake of 111In-octreotide in mice and rats. J Nucl Med 47, 528-533 (2006)

    PubMed  Google Scholar 

  170. Vegt, E., Wetzels, J. F., Russel, F. G., et al.: Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin. J Nucl Med 47, 432-436 (2006)

    PubMed  CAS  Google Scholar 

  171. Rolleman, E. J., Krenning, E. P., Van Gameren, A., et al.: Uptake of [111In-DTPA0]octreotide in the rat kidney is inhibited by colchicine and not by fructose. J Nucl Med 45, 709-713 (2004)

    PubMed  CAS  Google Scholar 

  172. Rolleman, E. J., Forrer, F., Bernard, B., et al.: Amifostine protects rat kidneys during peptide receptor radionuclide therapy with [(177)Lu-DOTA (0),Tyr (3)]octreotate. Eur J Nucl Med Mol Imaging 34, 763-771 (2007)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

de Jong, M., Verwijnen, S.M., de Visser, M., Kwekkeboom, D.J., Valkema, R., Krenning, E.P. (2008). Peptides for Radionuclide Therapy. In: Stigbrand, T., Carlsson, J., Adams, G.P. (eds) Targeted Radionuclide Tumor Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8696-0_7

Download citation

Publish with us

Policies and ethics