Skip to main content

Bystander Effects and Radionuclide Therapy

  • Chapter

Summary

The standard paradigm for radiation effects in biological systems is that direct DNA damage within the nucleus of a cell is required to trigger the down-stream biological consequences. However, significant evidence has been obtained for the presence of bystander effects where cells respond to the fact that their neighbours have been irradiated. As well as extensive evidence from external beam exposures, several studies have reported bystander responses after radionuclide incorporation. These have included the use of 3 H, 121 I, 123 I, 131 I and 211At-labelled targets. Responses have been reported both in vitro and in vivo and are distinct from physical cross-fire effects. For the development of new targeted therapies involving radionuclides, it is clear that bystander responses have the potential to significantly enhance the effectiveness of these approaches if the underlying mechanisms can be fully elucidated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R . L. Warters, K. G. Hofer, C. R. Harris and J. M. Smith, Radionuclide toxicity in cultured mammalian cells: elucidation of the primary site of radiation damage. Curr. Top. Radiat. Res. Q. 12, 389-407 (1977).

    Google Scholar 

  2. R . L. Warters and K. G. Hofer, Radionuclide toxicity in cultured mammalian cells. Elucidation of the primary site for radiation-induced division delay. Radiat. Res. 69, 348-358 (1977).

    Article  PubMed  Google Scholar 

  3. T . R. Munro, The relative radiosensitivity of the nucleus and cytoplasm of Chinese hamster fibroblasts. Radiat. Res. 42, 451-470 (1970).

    Article  PubMed  Google Scholar 

  4. R . E. Zirkle, Partial-cell irradiation. In Advances in Biology and Medical Physics (J. H. Lawrence and C. A. Tobias, Eds.), pp. 103-146. Academic, New York, 1957.

    Google Scholar 

  5. A. Cole, R. E. Meyn, R. Chen, P. M. Corry and W. Hittelman, Mechanisms of cell injury. In Radiation Biology in Cancer Research (R. E. Meyn and H. R. Withers, Eds.), pp. 33-58. Raven Press, New York, 1980.

    Google Scholar 

  6. E . J. Hall and A. J. Giaccia, Radiobiology for the Radiologist. Lippincott William & Wilkins, Philadelphia, PA, 2006.

    Google Scholar 

  7. J. F. Ward, Non-DNA targeted effects and DNA models. In Radiat. Res. (M. Moriarty, C. Mothersill, C. Seymour, M. Edington, J. F. Ward and R. J. M. Fry, Eds.), pp. 379-402. Allen Press, Lawrence, KS, 2000.

    Google Scholar 

  8. W . F. Morgan, Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat. Res. 159, 581-596 (2003).

    Article  PubMed  Google Scholar 

  9. W . F. Morgan, Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiationinduced genomic instability and bystander effects in vitro. Radiat. Res. 159, 567-580 (2003).

    Article  PubMed  Google Scholar 

  10. S. Tapio and V. Jacob, Radioadaptive response revisited. Radiat. Environ. Biophys. 46, 1-12 (2006).

    Article  PubMed  Google Scholar 

  11. E. G. Wright and P. J. Coates, Untargeted effects of ionizing radiation: implications for radiation pathology. Mutat. Res. 597, 119-132 (2006).

    PubMed  Google Scholar 

  12. M. C. Joiner, B. Marples, P. Lambin, S. C. Short and I. Turesson, Low-dose hypersensitivity: current status and possible mechanisms. Int. J. Radiat. Oncol. Biol. Phys. 49, 379-389 (2001).

    Article  PubMed  Google Scholar 

  13. C. R. Mitchell, M. Folkard and M. C. Joiner, Effects of exposure to low-dose-rate (60)co gamma rays on human tumor cells in vitro. Radiat. Res. 158, 311-318 (2002).

    Article  PubMed  Google Scholar 

  14. J. G. Hollowell and G. Littlefield, Chromosome damage induced by plasma of x-rayed patients: an indirect effect of x-ray. Proc. Soc. Exp. Biol. Med. 129, 240-244 (1968).

    PubMed  Google Scholar 

  15. I. Emerit, S. H. Khan and H. Esterbauer, Hydroxynonenal, a component of clastogenic factors? Free Radic. Biol. Med. 10, 371-377 (1991).

    Google Scholar 

  16. C. Auclair, A. Gouyette, A. Levy and I. Emerit, Clastogenic inosine nucleotide as components of the chromosome breakage factor in scleroderma patients. Arch. Biochem. Biophys. 278, 238-244 (1990).

    Article  PubMed  Google Scholar 

  17. I. Emerit, F. Garban, J. Vassy, A. Levy, P. Filipe and J. Freitas, Superoxide-mediated clastogenesis and anticlastogenic effects of exogenous superoxide dismutase. Proc. Natl. Acad. Sci. USA 93, 12799-12804 (1996).

    Article  PubMed  Google Scholar 

  18. H. Nagasawa and J. B. Little, induction of sister chromatid exchanges by extremely low doses of α-particles. Cancer Res. 52, 6394-6396 (1992).

    PubMed  Google Scholar 

  19. C. Mothersill and C. Seymour, Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of irradiated cells. Int. J. Radiat. Biol. 71, 421-427 (1997).

    Article  PubMed  Google Scholar 

  20. E. I. Azzam, S. M. de Toledo, T. Gooding and J. B. Little, Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles. Radiat. Res. 150, 497-504 (1998).

    Article  PubMed  Google Scholar 

  21. C. Shao, M. Folkard, B. D. Michael and K. M. Prise, Targeted cytoplasmic irradiation induces bystander responses. Proc. Natl. Acad. Sci. USA 101, 13495-13500 (2004).

    Article  PubMed  Google Scholar 

  22. L. Tartier, S. Gilchrist, S. Burdak-Rothkamm, M. Folkard and K. M. Prise, Cytoplasmic irradiation induces mitochondrial-dependent 53BP1 protein relocalization in irradiated and bystander cells. Cancer Res. 67, 5872-5879 (2007).

    Article  PubMed  Google Scholar 

  23. L. J. Wu, G. Randers-Pehrson, A. Xu, C. A. Waldren, C. R. Geard, Z. Yu and T. K. Hei, Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc. Natl. Acad. Sci. USA 96, 4959-4964 (1999).

    Article  PubMed  Google Scholar 

  24. O. V. Belyakov, S. A. Mitchell, D. Parikh, G. Randers-Pehrson, S. A. Marino, S. A. Amundson, C. R. Geard and D. J. Brenner, Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away. Proc. Natl. Acad. Sci. USA 102, 14203-14208 (2005).

    Article  PubMed  Google Scholar 

  25. O. A. Sedelnikova, A. Nakamura, O. Kovalchuk, I. Koturbash, S. A. Mitchell, S. A. Marino, D. J. Brenner and W. M. Bonner, DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res. 67, 4295-4302 (2007).

    Article  PubMed  Google Scholar 

  26. M. A. Khan, R. P. Hill and J. Van Dyk, Partial volume rat lung irradiation: an evaluation of early DNA damage. Int. J. Radiat. Oncol. Biol. Phys. 40, 467-476 (1998).

    PubMed  Google Scholar 

  27. I. Koturbash, R. E. Rugo, C. A. Hendricks, J. Loree, B. Thibault, K. Kutanzi, I. Pogribny, J. C. Yanch, B. P. Engelward and O. Kovalchuk, Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene 25, 4267-4275 (2006).

    Article  PubMed  Google Scholar 

  28. J. M. Kaminski, E. Shinohara, J. B. Summers, K. J. Niermann, A. Morimoto and J. Brousal, The controversial abscopal effect. Cancer Treat. Rev. 31, 159-172 (2005).

    Google Scholar 

  29. K. M. Prise, O. V. Belyakov, M. Folkard and B. D. Michael, Studies of bystander effects in human fibroblasts using a charged particle microbeam. Int. J. Radiat. Biol. 74, 793-798 (1998).

    Article  PubMed  Google Scholar 

  30. H. Yang, N. Asaad and K. D. Held, Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts. Oncogene (2005).

    Google Scholar 

  31. A. Bishayee, D. V. Rao and R. W. Howell, Evidence for pronounced bystander effects caused by nonuniform distributions of radioactivity using a novel three-dimensional tissue culture model. Radiat. Res. 152, 88-97 (1999).

    Article  PubMed  Google Scholar 

  32. A. Bishayee, H. Z. Hill, D. Stein, D. V. Rao and R. W. Howell, Free radical-initiated and gap junction-mediated bystander effect due to nonuniform distribution of incorporated radioactivity in a three-dimensional tissue culture model. Radiat. Res. 155, 1-10 (2000).

    Google Scholar 

  33. B. I. Gerashchenko and R. W. Howell, Bystander cell proliferation is modulated by the number of adjacent cells that were exposed to ionizing radiation. Cytometry A 66, 62-70 (2005).

    PubMed  Google Scholar 

  34. B. I. Gerashchenko and R. W. Howell, Proliferative response of bystander cells adjacent to cells with incorporated radioactivity. Cytometry A 60, 155-164 (2004).

    Article  PubMed  Google Scholar 

  35. R. Persaud, H. Zhou, S. E. Baker, T. K. Hei and E. J. Hall, Assessment of low linear energy transfer radiation-induced bystander mutagenesis in a three-dimensional culture model. Cancer Res. 65, 9876-9882 (2005).

    Article  PubMed  Google Scholar 

  36. R. Persaud, H. Zhou, T. K. Hei and E. J. Hall, Demonstration of a radiation-induced bystander effect for low dose low LET beta-particles. Radiat. Environ. Biophys. 46, 395-400 (2007).

    Article  PubMed  Google Scholar 

  37. L. Y. Xue, N. J. Butler, G. M. Makrigiorgos, S. J. Adelstein and A. I. Kassis, Bystander effect produced by radiolabeled tumor cells in vivo. Proc. Natl. Acad. Sci. USA 99, 13765-13770 (2002).

    Article  PubMed  Google Scholar 

  38. M. Boyd, S. C. Ross, J. Dorrens, N. E. Fullerton, K. W. Tan, M. R. Zalutsky and R. J. Mairs, Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides. J. Nucl. Med. 47, 1007- 1015 (2006).

    PubMed  Google Scholar 

  39. J. L. Dearling and R. B. Pedley, Technological advances in radioimmunotherapy. Clin. Oncol. (Royal College of Radiologists (Great Britain) ) 19, 457-469 (2007).

    Google Scholar 

  40. S. J. DeNardo and G. L. Denardo, Targeted radionuclide therapy for solid tumors: an overview. Int. J. Radiat. Oncol., Biol., Phys. 66, S89-95 (2006).

    Google Scholar 

  41. M. Boyd, S. H. Cunningham, M. M. Brown, R. J. Mairs and T. E. Wheldon, Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine. Gene Ther. 6, 1147-1152 (1999).

    Article  PubMed  Google Scholar 

  42. C. A. Boswell and M. W. Brechbiel, Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl. Med. Biol. 34, 757-778 (2007).

    Article  PubMed  Google Scholar 

  43. D. J. Brenner, R. Doll, D. T. Goodhead, E. J. Hall, C. E. Land, J. B. Little, J. H. Lubin, D. L. Preston, R. J. Preston, et al., Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc. Natl. Acad. Sci. USA 100, 13761-13766 (2003).

    Article  PubMed  Google Scholar 

  44. E. J. Hall, Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int. J. Radiat. Oncol. Biol. Phys. 65, 1-7 (2006).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Prise, K.M. (2008). Bystander Effects and Radionuclide Therapy. In: Stigbrand, T., Carlsson, J., Adams, G.P. (eds) Targeted Radionuclide Tumor Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8696-0_17

Download citation

Publish with us

Policies and ethics